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Quantum Gravity Boundary Terms from the Spectral Action of Noncommutative Space
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We study the boundary terms of the spectral action of the noncommutative space, defined by the
spectral triple dictated by the physical spectrum of the standard model, unifying gravity with all other
fundamental interactions. We prove that the spectral action predicts uniquely the gravitational boundary
term required for consistency of quantum gravity with the correct sign and coefficient. This is a
remarkable result given the lack of freedom in the spectral action to tune this term.
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It has been known since the 1960s [1] that in the
Hamiltonian quantization of gravity it is essential to in-
clude boundary terms in the action, as this allows us to
define consistently the momentum conjugate to the metric.
This makes it necessary to modify the Einstein-Hilbert
action by adding to it a surface integral term so that the
variation of the action becomes well defined and yields the
Einstein field equations. The reason for this manipulation
is that the curvature scalar R contains second derivatives of
the metric, which are removed after integrating by parts to
obtain an action which is quadratic in first derivatives of
the metric. These surface terms are canceled by modifying
the Euclidean action to [2], [3]
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where dM is the boundary of M, A, is the induced metric
on oM, and K is the trace of the second fundamental form
on dM. We use the sign convention according to which R is
positive for the sphere and K is positive for the ball. Notice
that there is a relative factor of 2 and a fixed sign between
the two terms, and that the boundary term has to be
completely fixed. This is a delicate fine-tuning and is not
determined by any symmetry, but only by the consistency
requirement. There is no known symmetry that predicts
this combination and it is always added by hand.

In the noncommutative geometric approach to the for-
mulation of a unified theory of all fundamental interactions
including gravity, the starting point is the replacement of
the Riemannian geometry of space-time with noncommu-
tative geometry. The basic data of noncommutative geome-
try consist of an involutive algebra A of operators in
Hilbert space FH, which plays the role of the algebra of
coordinates, and a self-adjoint operator D in H [4] which
plays the role of the inverse of the line element. The
spectrum of the standard model indicates that the algebra
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is to be taken as A = C*(M) ® A where the algebra
Ay is finite dimensional, Ap = C® H & M;(C), and
H C M,(C) is the algebra of quaternions. The algebra
A is a tensor product which geometrically corresponds
to a product space. The spectral geometry of A is given by
the product rule

H =1*M,S) e Hp, D=D,®1+vys®Dp,
where L?(M, S) is the Hilbert space of L? spinors, and D,
is the Dirac operator of the Levi-Civita spin connection on
M. The Hilbert space of quarks and leptons fixes the choice
of the Dirac operator D and the action of A . in H 5. The
operator Dy anticommutes with the chirality operator yr
on FH . The spectral geometry does not change if one
replaces D by the equivalent operator

but this equivalence fails when M has a boundary and it is
only the latter choice which has conceptual meaning since
vs no longer anticommutes with D), when dM # @. The
noncommutative space defined by a spectral triple has to
satisfy the basic axioms of noncommutative geometry.
This approach shares a common feature with Euclidean
quantum gravity in that the Riemannian manifold is taken
to be Euclidean in order for the line element, which is the
inverse of the Dirac operator, to be compact. It is then
assumed that one obtains the Lorentzian results by analyti-
cally continuing the expressions obtained by performing
the path integral to Minkowski space. A fundamental
principle in the noncommutative approach is that the usual
emphasis on the points x € M of a geometric space is now
replaced by the spectrum of the operator D. The spectral
action principle states that the physical action depends only
the spectrum of the Dirac operator, which is geometrical.
Indeed, it was shown that all the fundamental interactions
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including gravity are unified in the spectral action [5]
D
[=Tr f<K> L (¥, DW),

where Tr is the usual trace of operators in the Hilbert space
H, A is a cutoff scale, and f is a positive function. The
action is then uniquely defined and the only arbitrariness
one encounters is in the first few coefficients in the spectral
expansion since higher coefficients are suppressed by the
high-energy scale. This remarkable action includes the
gravitational Einstein-Hilbert term with the square of the
Weyl tensor, the SU(3), X SU(2),, X U(1)y gauge inter-
actions, the Higgs couplings including the spontaneous
symmetry breaking, all coming with the correct signs as
well as a relation between the gauge couplings and Higgs
couplings. The geometrical model is valid at the unification
scale and relates the gauge coupling constants to each other
and to the Higgs coupling. When these relations are taken
as boundary conditions valid at the unification scale in the
renormalization group (RG) equations, one gets a predic-
tion of the Higgs boson mass to be around 170 = 10 GeV,
the error being due to our ignorance of the physics at
unification scale. In addition, there is one relation between
the sum of the square of fermion masses and the W particle
mass square which enables us to predict the top quark mass
compatible with the measured experimental value. It also
accommodates small neutrino masses through the seesaw
mechanism, thanks to a more subtle choice ([6]) of the
chirality operator v which gives to the geometry F a KO
dimension which is congruent to 6 modulo 8. The charge
conjugation operator J for the product geometry (1) is then
given by J = Jy;¥s ® Jr which commutes with the opera-
tor D given by (1) since in even dimension J;; commutes
with D, while in dimension 6 modulo 8, J anticommutes
with yp.

The results were derived for manifolds without bound-
ary. We stress that definition of the noncommutative space
corresponding to the physical space-time must satisfy the
restrictive axioms of noncommutative geometry. Once this
is done, there is essentially no freedom left in determining
the spectral action, except for the three coefficients of the
Mellin transform of the function f. These correspond to the
cosmological constant, the Newton constant, and the gauge
couplings and where the dependence on the energy scale is
governed by the renormalization group equations. Because
of these constraints, it is essential to find out whether the
boundary terms of the spectral action agree with the mod-
ifications dictated by the consistency of quantum gravity.
This is a severe test of the spectral action principle as there
is no freedom present in tuning the surface terms to re-
produce the desired results with correct signs and numeri-
cal values. It is the purpose of this work to show that the
spectral action does pass all tests predicting the correct
modification of the boundary terms. We can go further and
make the mass scale A appearing in the Dirac operator

dynamical by replacing it with a dilaton field. We have
recently shown that in this case the spectral action becomes
almost scale invariant and gives the same low-energy limit
as the Randall-Sundrum model as well as providing a
model for extended inflation [7]. In other words, the simple
form of the spectral action is capable of producing all the
desirable features of unified theories including gravity with
the correct physical predictions.

The Dirac operator in the spectral action must satisfy the
Hermiticity condition

(¥, DW) = (DW, W),

These are satisfied provided the following ‘‘natural”
boundary condition is imposed [§—10]

II_W|,, =0,

where the projection operator II_ is given by I1_ = % X
(1 = x), where y = vy,7vs satisfies y> = 1. The Clifford
algebra is defined by {y*, v’} = —2g*” and we denote by
n the unit inward normal and vy,, the corresponding Clifford
multiplication. Although one can keep the discussion gen-
eral, it will be more transparent to specialize to the case
where the dimensions of the continuous part of the non-
commutative space is taken to be four. A local system of
coordinates on M will be denoted by x*, u = 1,...,4, and
on dM will be denoted by y“, a = 1, 2, 3. Let the functions
x*(y%) be given by the embedding of the hypersurface in M
and let e; = % then the metric g,, on M induces a
metric h,, on the hypersurface such that h,, = g,,eq e},
and where n* is orthogonal to ¢4 so that guvnte; = 0. It
is convenient to define n,, = g,,n” so that nﬂeff = 0. We
now define the inverse functions €% by efye’, = 85 which
satisfies the condition e} ¢4 = 8% — n*n, to be consistent
with n #e;‘f = (. We therefore can write [11]

— a ,b
8uv = hapejey + nyn,.

The inverse metric is also defined by h*> = g#”e4 eb and
the inverse relation is

gt = heliel + ntn”.

This shows that any tensor can be projected into the hyper-
surface using the completeness relations for the basis
{e4, n,}. We finally define on M,

Vh
X="3r €Y Vb Yer

Y5 = XVn

which satisfy x> = 1, x¥* = v x, x¥" = —¥"X> ’)’% =1
X7Vs5 = —7vs5x- The normal vector n* satisfies the proper-
ties

071302-2



PRL 99, 071302 (2007)

PHYSICAL REVIEW LETTERS

week ending
17 AUGUST 2007

— b © — ©
Ny, = —Kgejes, eavey, =1 ec + K n*,

where the covariant derivative ; v is the space-time cova-
riant derivative and I'¢, is the Christoffel connection of the
metric h,;,, and K, is the extrinsic curvature whose sym-
metry follows from the relation el = e} .

The bosonic part of the spectral action is then obtained
by using the identity [5]

Tr A0/ m)] = Y fy-pan(D?/m)

n=0

where f, are related to the Mellin transforms of the func-
tion f. The Seeley-deWitt coefficients a,(P, ) are geo-
metrical invariants. These were calculated for Laplacians
which are the square of the Dirac operator, for manifolds
with boundary. To evaluate these terms, we first write the
Laplacian in the form

P=D?= —(gtd,0, + A* + B)
= —(g""' VLV, + E),

- — 1
where V), = 9, + o/, and 0}, = 5g,,(A” + gP7T'} ;). It
is convenient to write the Dirac operator in the form

D= y“VM — @,

where V, =9, + ®, and o, is the torsion free spin
connection. The boundary conditions for D? are then
equivalent to [9,10]

B,V =I_(W|y eIl (V,+ I, (V)| =0,
where

S=T11(y,® — 1y, y*V,IL,
Vix = d.x + [wh x]1 = Kapx vy’ + 04 X1,

and where 0, = w! — w,. We then have the relations

E=yrV, 0 — ®? — Ly Q)

— A ! ! A ! !
,,—E)#w,, aywﬂ+wua)y w,w,.

Q

o

We list the first relevant Seeley-deWitt coefficients for
Laplacians which are square of Dirac operators [12]

1
a(Px) = = fMd‘*x@Tr(n, a/(P, x) =0,

1
a,(P, x) = 962 |:fM d*xJgTr (6E + R)

+ f d3x\/ﬁTr(2K+12S)}
oM

as(P, x) = d3x/hTr (96 YE + 3K?

1
384(4)3/2 [aM
+ 6K, K + 96SK + 19282 — 12V V' y).

As a warm-up, these results could be applied to the simple
case of an ordinary Dirac operator D = y*(9, + w,,).
Therefore, in the above formulas we have

[ A— —
:u'_w,u’ q)_())

— _1
w E_ ZR)
S: _%KH+,

Vix = Kupxy"y".

Substituting Tr (1) = 4 and Tr(S) = —K we have for the
first few terms

1
ao(P, x) = m Md4x &

1 1
abx) =" ([M d'x5VER + [E)M dsX\/EK)’
1
= 3 2 ab
a3(P. x) = G fa L xVh(K? = 2K ,,KP).

The important point in the above result is the emergence
of the combination [2] — [,, d*x/gR — 2 [,,, d®*x+/hK as
the lowest term of the gravitational action which is known
to be the required correction to the Einstein action involv-
ing the surface term so as to make the Hamiltonian formal-
ism consistent. This is remarkable because both the sign
and the coefficient are correct. The only assumption made
is that normal boundary conditions are taken such that they
enforce the Hermiticity of the Dirac operator. This is yet
another miracle concerning correct signs obtained in the
spectral action of the Dirac operator. We also notice that
the relative coefficient between R and K depends, in gen-
eral, on the nature of the Laplacian. The desired answer is
true for the square of the Dirac operator, but not for a
general Laplacian. We note that other boundary conditions
may lead to different results [12].

This is a general result and applies to all noncommuta-
tive models based on spaces which are the tensor product
of the spectral triple of a Riemannian manifold by that of a
discrete space. In particular, the above feature also works
for the spectral action of the standard model. Indeed, by
applying the above formulas to the Dirac operators in the
quarks and leptonic sectors with the corresponding bound-
ary conditions one derives the full spectral action with
boundary terms included. We just give the results here;
the full details will appear in the expanded version of this
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Letter [13]. (Note that in [6] we use the opposite sign convention for the scalar R):

- 4834 i j dn e+ S p [ ] -

gl [ B = 2K K]

277' 30

2
+ blelt + 2elgf +3d — salgl)hy - —Rf;}

5

2772 2

+ m(nz@ + 39KK,, K% — 116K2K1§K2)“,

where f, = [ v""! f(v)dv, and
a = Tr(3|k"|* + 3|k9]> + |k + |k”]%),
b = Tr (3k*|* + 3|k|* + |k¢|* + k7%,
¢ = Tr (k" [?),
d = Tr(|k"=[*),

e = Tr(|k"r|?|k"]?).

In the above expression, g, g,, and g5 are the U(1), SU(2),
and SU(3) gauge couplings with the corresponding gauge
field strengths B,,,, F;,, and Gfu,,, and where the Higgs
doublet is ¢ and the Yukawa fermionic couplings are given
by the 3 X 3 matrices k", k9, ke, k¥, and k”®. The first few
boundary terms depend only on the gravitational fields,
while the Higgs field would begin to appear in the a, term.
Contributions of the vector fields drop out completely if we
make the assumption that their normal components vanish
on the boundary: A,|,;; = 0. Remarkably the terms
tR(alel* +3c) and {K(ale|* +1c) appear again with
the same sign and the same relative factor of 2. This is a
proof that the spectral action takes care of its self
consistency.

From all these considerations we deduce that the simple
requirement of having boundary conditions consistent with
the Hermiticity of the Dirac operator is enough to guaran-
tee that the spectral action has all the correct features and
expected terms, including correct signs and coefficients.

Finally we note that we can include the effects of
introducing a dilaton field to make the mass scale dynami-
cal and obtain an almost scale invariant action. The main
results were obtained recently [7] where it was shown that
the dilaton interacts only through its kinetic term with a
potential generated at the quantum level. The model has
the same low-energy sector as the Randall-Sundrum model

1
G

ﬂ{ d%m/ﬁ[ <a|¢>|2 + = c> + —(SRK + 4KR?,, + 4K, R¢

%cﬂ - d%\/ﬁK}

11 1 1 .
# 0] [ i 3 Gl + R R + alDpl + R(alel? + 5) + (G + LY+ 3 61 (B)

18Ranbn Kab)

acb

[

and the model of extended inflation. In the case of mani-
folds without boundary, the only modifications needed in
the spectral action is the addition of the dilaton terms
£2fr [ d*xJGGHd,, ¢, ¢. For manifolds with bound-
ary there will be additional terms and these could play
some role in cosmological considerations.
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