
Why There is Something Rather than Nothing: Cosmological Constant from Summing
over Everything in Lorentzian Quantum Gravity

A. O. Barvinsky
Theory Department, Lebedev Physics Institute, Leninsky Prospect 53, 119991 Moscow, Russia

(Received 9 April 2007; published 16 August 2007)

The density matrix of the Universe for the microcanonical ensemble in quantum cosmology describes
an equipartition in the physical phase space of the theory (sum over everything), but in terms of the
observable spacetime geometry this ensemble is peaked about the set of recently obtained cosmological
instantons limited to a bounded range of the cosmological constant. This suggests the mechanism of
constraining the landscape of string vacua and a possible solution to the dark energy problem in the form
of the quasiequilibrium decay of the microcanonical state of the Universe.
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Euclidean quantum gravity (EQG) is a lame duck in
modern particle physics and cosmology. After its summit
in the early and late 1980s (in the form of the cosmological
wave function proposals [1,2] and baby universes boom
[3]) the interest in this theory gradually declined, espe-
cially, in a cosmological context, where the problem of
quantum initial conditions was superseded by the concept
of stochastic inflation [4]. EQG could not stand the burden
of indefiniteness of the Euclidean gravitational action [5]
and the cosmology debate of the tunneling vs no-boundary
proposals [6].

Thus, a recently suggested EQG density matrix of the
Universe [7] is hardly believed to be a viable candidate for
the initial state of the Universe, even though it avoids the
infrared catastrophe of small cosmological constant �,
generates an ensemble of universes in the limited range
of �, and suggests a strong selection mechanism for the
landscape of string vacua [7,8]. Here we want to justify this
result by deriving it from first principles of Lorentzian
quantum gravity applied to a microcanonical ensemble of
closed cosmological models.

Thermal properties in quantum cosmology [9] are in-
corporated by a mixed physical state, which is dynamically
more preferable than a pure state of the Hartle-Hawking
type. This follows from the path integral for the EQG
statistical sum [7,8]. It can be cast into the form of the
integral over a minisuperspace of the lapse function N���
and scale factor a��� of spatially closed Friedmann-
Robertson-Walker (FRW) metric ds2 � N2���d�2 �

a2���d2��3�,

 e�� �
Z

periodic
D�a; N�e��E�a;N�; (1)

 e��E�a;N� �
Z

periodic
D��x�e�SE�a;N;��x��: (2)

Here �E�a; N� is the Euclidean effective action of all
inhomogeneous ‘‘matter’’ fields which include also metric
perturbations on minisuperspace background ��x� �

���x�;  �x�; A��x�; h���x�; . . . �. SE�a;N;��x�� is the clas-
sical Eucidean action, and the integration runs over peri-
odic fields on the Euclidean spacetime with a compactified
time � (of S1 � S3 topology).

For free matter fields ��x� conformally coupled to grav-
ity (which are assumed to be dominating in the system) the
effective action is exactly calculable [7]: �E�a; N� �R
d�NL�a; a0� � F���, a0 	 da=Nd�. Here NL�a; a0� is

the effective Lagrangian of its local part including the
classical Einstein term (with the cosmological constant
� � 3H2) and the contribution of the conformal anomaly
of quantum fields and their vacuum (Casimir) energy,

 L �a; a0� � �aa02 � a�H2a3 � B
�
a02

a
�
a04

6a
�

1

2a

�
:

(3)

F��� is the free energy of their quasiequilibrium excita-
tions with the temperature given by the inverse of the
conformal time � �

R
d�N=a. This is a typical boson or

fermion sum F��� � 

P
! ln�1� e�!�� over field oscil-

lators with energies ! on a unit 3-sphere. We work in units
of mP � �3�=4G�1=2, and B is the constant determined by
the coefficient of the Gauss-Bonnet term in the overall
conformal anomaly of all fields ��x�.

Semiclassically, the integral (1) is dominated by the
saddle points—solutions of the Friedmann equation

 

a02

a2
� B

�
1

2

a04

a4 �
a02

a4

�
�

1

a2 �H
2 �

C

a4 ; (4)

modified by the quantum B-term and the radiation term
C=a4, with the constant C satisfying the bootstrap equation
C � B=2� dF���=d�. Such solutions represent garland-
type instantons which exist only in the limited range 0<
�min <�< 3m2

P=2B [7,8] and eliminate the infrared ca-
tastrophe of � � 0. The period of these quasithermal in-
stantons is not a freely specifiable parameter, but as a
function of � follows from this bootstrap. Therefore, this
is not a canonical ensemble.
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Contrary to this construction we suggest the density
matrix as the canonical path integral of Lorentzian quan-
tum gravity. Its kernel in the representation of 3-metrics
and matter fields, denoted below as q, reads

 	�q�; q�� � e�
Z
q�t
��q


D�q; p; N�e
i
R
t�
t�
dt�p _q�N�H��;

(5)

where the integration runs over histories of phase-space
variables (q�t�, p�t�) interpolating between q
 at t
 and
the Lagrange multipliers of the gravitational constraints
H� � H��q; p�—lapse and shift functions N�t� � N��t�.
The measure D�q; p; N� includes the gauge-fixing factor of
the delta function 
��� �

Q
t
Q
� 
��

�� of gauge condi-
tions �� and the relevant ghost factor [10,11] (condensed
index � includes also continuous spatial labels). It is
important that the integration range of N�,

 �1<N <�1; (6)

generates in the integrand the delta-functions of the con-
straints 
�H� �

Q
�
�H��. As a consequence, the kernel

(5) satisfies the set of Wheeler-DeWitt equations

 Ĥ ��q; @=i@q�	�q; q
0� � 0; (7)

and the density matrix (5) can be regarded as an operator
delta-function of these constraints

 	̂� “
Y
�


�Ĥ��”: (8)

This expression should not be understood literally because
the multiple delta function here is not uniquely defined, for
the operators Ĥ� do not commute and form an open
algebra. Moreover, exact operator realization Ĥ� is not
known except the first two orders of a semiclassical
@-expansion [12]. Fortunately, we do not need a precise
form of these constraints, because we will proceed with
their path-integral solutions adjusted to the semiclassical
perturbation theory.

The very essence of our proposal is the interpretation of
(5) and (8) as the density matrix of a microcanonical
ensemble in spatially closed quantum cosmology. A sim-
plest analogy is the density matrix of an unconstrained
system having a conserved Hamiltonian Ĥ in the micro-
canonical state with a fixed energy E, 	̂� 
�Ĥ� E�. A
major distinction of (8) from this case is that spatially
closed cosmology does not have freely specifiable con-
stants of motion like the energy or other global charges.
Rather it has as constants of motion the Hamiltonian and
momentum constraints H�, all having a particular value—
zero. Therefore, the expression (8) can be considered as a
most general and natural candidate for the quantum state of
the closed Universe. Below we confirm this fact by show-
ing that in the physical sector the corresponding statistical
sum is a uniformly distributed (with a unit weight) integral

over the entire phase space of true physical degrees of
freedom. Thus, this is the sum over everything. However,
in terms of the observable quantities, like spacetime ge-
ometry, this distribution turns out to be nontrivially peaked
around a particular set of universes. Semiclassically this
distribution is given by the EQG density matrix and the
saddle-point instantons of the above type [7].

From the normalization of the density matrix in the
physical Hilbert space we have

 1 � Trphys	̂ �
Z
dq��q; @=i@q�	�q; q0�jq0�q

� e�
Z

periodic
D�q; p; N�ei

R
dt�p _q�N�H��: (9)

Here, in view of the coincidence limit q0 � q, the integra-
tion runs over periodic histories q�t�, and��q; @=i@q� � �̂
is the measure which distinguishes the physical inner
product in the space of solutions of the Wheeler-DeWitt
equations � 1j 2� � h 1j�̂j 2i from that of the space of
square-integrable functions, h 1j 2i �

R
dq 1 2. This

measure includes the delta function of unitary gauge con-
ditions �� � ���q; p� and an operator factor incorporat-
ing the relevant ghost determinant [12].

On the other hand, in terms of the physical phase space
variables the Faddeev-Popov path integral equals [10,11]
 Z

D�q; p; N�ei
R
dt�p _q�N�H��

�
Z
DqphysDpphyse

i
R
dt�pphys _qphys�Hphys�t��

� Trphys�Te
�i
R
dtĤphys�t��; (10)

where T denotes the chronological ordering. The physical
Hamiltonian and its operator realization Ĥphys�t� are non-
vanishing here only in unitary gauges explicitly depending
on time [12], ���q; p; t�. In static gauges, @t�� � 0, they
vanish, because the full Hamiltonian in closed cosmology
is a combination of constraints.

The path integral (10) is gauge independent on-shell
[10,11] and coincides with that in the static gauge.
Therefore, from Eqs. (9) and (10) with Ĥphys � 0, the
statistical sum of our microcanonical ensemble equals

 e�� � TrphysIphys �
Z
dqphysdpphys

� sum over everything: (11)

Here Iphys � 
�qphys � q0phys� is a unit operator in the
physical Hilbert space, whose kernel when represented as
a Fourier integral yields extra momentum integration
(2�-factor included into dpphys). This sum over everything
(as a counterpart to the concept of creation from ‘‘any-
thing’’ in [13]), not weighted by any nontrivial density of
states, is a result of general covariance and the closed
nature of the Universe lacking any freely specifiable con-
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stants of motion. The Liouville integral over entire physi-
cal phase space, whose structure and topology is not
known, is very nontrivial. However, below we show that
semiclassically it is determined by EQG methods and
supported by instantons of [7] spanning a bounded range
of the cosmological constant.

Integration over momenta in (9) yields a Lagrangian
path integral with a relevant measure and action

 e�� �
Z
D�q;N�eiSL�q;N�: (12)

As in (9) integration runs over periodic fields (not indicated
explicitly but assumed everywhere below) even despite the
Lorentzian signature of the underlying spacetime.
Similarly to the procedure of [7,8] leading to (1) and (2),
we decompose [q, N] into a minisuperspace [aL�t�, NL�t�]
and the matter �L�x� variables, the subscript L indicating
their Lorentzian nature. With a relevant decomposition of
the measure D�q;N� � D�aL; NL�D�L�x�, the microca-
nonical sum reads

 e�� �
Z
D�aL; NL�e

i�L�aL;NL�; (13)

 ei�L�aL;NL� �
Z
D�L�x�eiSL�aL;NL;�L�x��; (14)

where �L�aL;NL� is a Lorentzian effective action. The
stationary point of (13) is a solution of the effective equa-
tion 
�L=
NL�t� � 0. In the gauge NL � 1 it reads as a
Lorentzian version of the Euclidean Eq. (4) and the boot-
strap equation for the radiation constant C with the Wick
rotated � � it, a��� � aL�t�, � � i

R
dt=aL�t�. However,

with these identifications C turns out to be purely imagi-
nary [in view of the complex nature of the free energy
F�i

R
dt=aL�]. Therefore, no periodic solutions exist in

spacetime with a real Lorentzian metric.
On the contrary, such solutions exist in the Euclidean

spacetime. Alternatively, the latter can be obtained with the
time variable unchanged t � �, aL�t� � a���, but with the
Wick rotated lapse function

 NL � �iN; iSL�aL;NL;�L� � �SE�a;N;��: (15)

In the gauge N � 1 (NL � �i) these solutions exactly
coincide with the instantons of [7]. The corresponding
saddle points of (13) can be attained by deforming the
integration contour (6) of NL into the complex plane to
pass through the point NL � �i and relabeling the real
Lorentzian t with the Euclidean �. In terms of the
Euclidean N���, a��� and ��x� the integrals (13) and (14)
take the form of the path integrals (1) and (2) in EQG,

 i�L�aL; NL� � ��E�a; N�: (16)

However, the integration contour for the Euclidean N���
runs from �i1 to �i1 through the saddle point N � 1.
This is the source of the conformal rotation in Euclidean
quantum gravity, which is called to resolve the problem of

unboundedness of the gravitational action and effectively
renders the instantons a thermal nature, even though they
originate from the microcanonical ensemble. This mecha-
nism implements the justification of EQG from the canoni-
cal quantization of gravity [14] (see also [15] for the black
hole context).

To show this we calculate (1) in the one-loop approxi-
mation with the measure inherited from the canonical path
integral (5) D�a;N� � DaDN��a;N�
���DetQ. Here
��a; N� is a local measure determined by the Lagrangian
NL�a; a0�, (3), in the local part of �E�a;N�,
 

�1�loop �
Y
�

�
@2�NL�
@ _a@ _a

�
1=2
�
Y
�

�
D

Na2a02

�
1=2
;

D � aa02�a2 � B� Ba02�:

(17)

The factor 
���DetQ contains a gauge condition � �
��a; N� fixing the one-dimensional diffeomorphism, �!
�� � �� f=N, which for infinitesimal f � f��� has the
form �fN 	 �N��� � N��� � _f, �fa 	 �a��� � a��� �
_af=N, and the ghost operator Q � Q�d=d�� is determined

by the gauge transformation �f� � Q�d=d��f���.
The conformal mode � of the perturbations 
a � �a0

and 
N � �N0 on the saddle-point background (labeled
below by zero, a � a0 � 
a, N � N0 � 
N) originates
from imposing the background gauge ��a; N� �

N � �N0=a0�
a. In this gauge Q � a�d=d��a�1, and
the quadratic part of �E takes the form [16]

 
2
��E � �

3�m2
P

2

Z
d�ND

��
�
a0

�
0
�

2
; (18)

where D is given by (17). As is known from [7] for the
background instantons a2

0��� � a2
� >B (a� is the turning

point with the smallest value of a0���), so that D> 0
everywhere except the turning points where D degenerates
to zero. Therefore 
2

��E < 0 for real �, but the Gaussian
integration runs along the imaginary axes and yields the
functional determinant of the positive operator—the ker-
nel of the quadratic form (18)

 e��1�loop � e��0 DetQ0

Z
D�

�Y
�

D=a02
�

1=2
e��1=2�
2

��E

� e��0 Det
�
d
d�

��
Det

�
�

1����
D
p

d
d�
D
d
d�

1����
D
p

��
�1=2

:

In view of periodic boundary conditions for both operators
their determinants cancel each other (their zero modes to
be eliminated because they correspond to the conformal
Killing symmetry of FRW instantons) [16]. Therefore, the
contribution of the conformal mode reduces to the selec-
tion of instantons with a fixed time period, effectively
endowing them with a thermal nature.

As suggested in [7,8,17] these instantons serve as initial
conditions for inflationary universes which evolve accord-
ing to the Lorentzian version of Eq. (4) and, at late stages,
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have two branches of a cosmological acceleration with
Hubble scales H2


 � �m
2
P=B��1
 �1� 2BH2�1=2�. If the

initial � � 3H2 is a composite inflaton field decaying at
the end of inflation, then one of the branches undergoes
acceleration with H2

� � 2m2
P=B. This is determined by the

new quantum gravity scale suggested in [8]—the upper
bound of the instanton �-range, �max � 3m2

P=2B. To
match the model with inflation and the dark energy phe-
nomenon, one needs B of the order of the inflation scale in
the very early Universe and B� 10120 now, so that this
parameter should effectively be a growing function of time.

This picture seems to fit into string theory at its low-
energy field-theoretic level. Then, with a bounded range of
�, it might constrain the landscape of string vacua [7,8].
Moreover, string theory has a qualitative mechanism to
promote the constant B to the level of a moduli variable
indefinitely growing with the evolving size R�t� of extra
dimensions. Indeed B as a coefficient in the overall con-
formal anomaly of four-dimensional quantum fields basi-
cally counts their number N, B� N. In the Kaluza-Klein
(KK) theory and string theory the effective four-
dimensional fields arise as KK and winding modes with
the masses [18]

 m2
n;w �

n2

R2 �
w2

02
R2 (19)

(enumerated by the KK and winding numbers), which
break their conformal symmetry. These modes remain
approximately conformally invariant as long as their
masses are much smaller than the spacetime curvature,
m2
n;w � H2

� �m
2
P=N. Therefore, the number of confor-

mally invariant modes changes with R. Simple estimates
show that for pure KK modes (w � 0, n � N) their num-
ber grows with R as N � �mPR�

2=3, whereas for pure wind-
ing modes (n � 0, w � N) their number grows with the
decreasing R as N � �mP0=R�2=3. Thus, the effect of
indefinitely growing B is possible for both scenarios with
expanding or contracting extra dimensions. In the first case
this is the growing tower of superhorizon KK modes which
make the horizon scale H� � mP

���������
2=B

p
�mP=�mPR�

1=3

indefinitely decreasing with R! 1. In the second case
this is the tower of superhorizon winding modes which
make this acceleration scale decrease with the decreasing
R as H� �mP�R=mP

0�1=3. This effect is flexible enough
to accommodate the present day acceleration scale
(though, by the price of fine-tuning an enormous coeffi-
cient of expansion or contraction of R). This gives a new
dark energy mechanism driven by the conformal anomaly
and transcending the inflationary and matter-domination
stages starting with the state of the microcanonical
distribution.

To summarize, within a minimum set of assumptions
[the equipartition in the physical phase space (11)], we
have the mechanism of generating a limited range of the
positive cosmological constant which is likely to constrain

the landscape of string vacua and get the full evolution of
the Universe as a quasiequilibrium decay of its initial
microcanonical state. Thus, contrary to anticipations of
Sidney Coleman that ‘‘there is nothing rather than some-
thing’’ [3], one can say that something (rather than noth-
ing) comes from everything.
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