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Local and Global Distinguishability in Quantum Interferometry

Gabriel A. Durkin'* and Jonathan P. Dowling®

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA
’Hearne Institute for Theoretical Physics, Louisiana State University, Baton Rouge, Louisiana 70803, USA
(Received 13 July 2006; published 15 August 2007)

A statistical distinguishability based on relative entropy characterizes the fitness of quantum states for
phase estimation. This criterion is employed in the context of a Mach-Zehnder interferometer and used to
interpolate between two regimes of local and global phase distinguishability. The scaling of distinguish-
ability in these regimes with photon number is explored for various quantum states. It emerges that local
distinguishability is dependent on a discrepancy between quantum and classical rotational energy. Our
analysis demonstrates that the Heisenberg limit is the true upper limit for local phase sensitivity. Only the
“NOON* states share this bound, but other states exhibit a better trade-off when comparing local and

global phase regimes.
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Interferometry may be viewed as an estimation of a
finite phase parameter from a position of prior ignorance
[1]. It is also used to identify small changes in a known
phase, or to track such changes over time. The tasks of
global phase acquisition and local phase tracking are both
important challenges. Classically, the distinction is well
understood, for example, in implementations of radar or
sonar [2]. Any comprehensive analysis of a quantum in-
terferometer should address these two different facets of
metrology [3].

Real interferometers always have trade-offs between
performance (e.g., accuracy and precision), robustness (to
photon loss and decoherence), and complexity (resources
in state generation, phase encoding, and measurement).
Focusing on the performance aspect of an ideal interfer-
ometer free of losses and decoherence may clarify which
quantum correlations lead to precision enhancement [4,5]
in local and global limits. In this Letter we examine the
intrinsic fitness of various quantum states for an ideal
interferometer independent of any specific estimation pro-
tocol, i.e., irrespective of how the measurement data are
processed. The fitness criteria introduced will be based on
the collective information content of the measurement
distribution, and not simply on features like the mean or
variance.

A quantum state of n photons distributed across two
spatial modes a and b is isomorphic to a spin-j particle [6].
A two-mode Fock state |n,), ® |n,), is mapped onto
|j, m)., where j = (n, + n;)/2 and subscript z denotes
that this is an eigenstate of J . with eigenvalue m = (n, —
n,)/2. In terms of creation and annihilation operators,
generators of unitary transformations representing linear
optical elements are J, = 1(ath + bta), J, = —i(ath -
b'a) and J, = 1(ata — b'h). Also, J> = a/2(7/2 + 1),
where 4 = (aTa + b1h) is the total photon number. The
generators obey commutation relations, [J,, J gl =
2ie,pyJ, and the eigenequations are Jj, m); =
JG + Dlj.m); and Jilj, m); = mlj, m); for i € {x, y, 2}.
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Given an input or probe state |i,), the Mach-Zehnder
(MZ) interferometer with phase difference 6 between the
arms (Fig. 1) performs a transformation exp{iJ /2} X
exp{iJ.0}exp{—iJ,m/2}, equivalent to a rotation [5]
through @ about the y axis, i.e., exp{iJA}ﬂ}. One infers an
unknown 6 by making measurements on the output state
lihy). This task is hampered by the nonexistence of a
Hermitian phase operator 6 in Hilbert space. Even in this
idealized lossless setting, any estimate ¢, of the phase has
accuracy and precision limited by both the choice of i)
and the measurement employed. Conventionally and most
simply one counts photons in the output arms of the
interferometer, equivalent to measurement of J ., and this
will be considered here. Other measurements have been
proposed, e.g., J % [7], parity measurements [8], homodyne
detection [9,10], heterodyne detection [11], and forms of
generalized measurement [3,12,13].

The evolution of a pure state in an ideal MZ interfer-
ometer is governed by the Schrodinger equation,

d o
i@|¢a> = J,lig) ey

for 6 a timelike variable and 7 = 1. The spin observable J y
plays the role of Hamiltonian and as such is a conserved
quantity; its eigenvectors are preserved. The transformed
state is

. +
W) = elgg) = 3 d@lim. @

m=-j

FIG. 1. Mach-Zehnder interferometer with 2-mode input state
li4o). Angle 6 is the relative phase between the two arms. Beam
splitters perform * 7 rotations about the x axis. Detectors at the
outputs count photon numbers n, and n,.
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in the J, basis. Probability amplitudes i,,(8) =,{j, m|y)
are r,(6)exp{i¢,,(#)} in polar form; modulus r, and
argument ¢,, are both real-valued functions of #. The
measurement distribution is the set P(6) = {p,,(0)}, where
Pu(0) = |G, mlgg)2 = (00, (6) = r2(6).  These
probabilities lie at the heart of phase estimation—over a
data run the frequencies of measurement outcomes tend
towards the same distribution. The full distribution {p,,(6)}
carries information about €, more than is characterized by
its maxima [14], or that is contained in means and varian-
ces, or particular moments of .J .- This is an important detail
when the governing probabilities p,,(6) are multiple-
peaked and non-Gaussian in 6, as is often the case in
quantum interferometry [15].

By matching ratios of observed measurements to a
particular governing distribution, one may infer € to within
some precision. However, two issues prevent this from
being done exactly and unambiguously. First, the number
of experimental trials is finite, and may be small, so the set
of measured outcomes may not be typical of the governing
distribution. For example, a fair coin tossed 4 times may
still land “‘heads” 4 times in a row, an atypical result.
Second, even for typical data sets there may not exist a
one-to-one mapping 6 — P(6) between phases and proba-
bility distributions for 6 € [0, 277). Without such a map-
ping there is no simple inversion, P(6) — 6.

What properties of p,,(6) might make it more immune to
these difficulties? Ideally, one asks that p,,(6;) # p,,(6,)
and that these distributions are somehow ““far apart”, in the
sense that one would be unlikely to mistake one for the
other. From the Theory of Types [16], the probability
P(—) that a parent distribution P(6,) gives rise to a data
set typical of P(6,) is bounded by

2= kSLPO)IIP(6)]
(k+ DG
for a sequence of k independent measurements. Here (2j +
1) is the cardinality of distinct measurement outcomes
m & {—j,—j+1,...,+j}. The non-negative functional
S[P(6;) || P(6,)] is known as the relative entropy or
Kullback-Leibler divergence [17],

+j
SLP(O) | P(0)] = > pu(6))log, ZEZS

m=—j

=< po—n = 2 —kS[P(6,)IP(6,)] (3)

4

J

JISEPGc = A/2) I PO+ /2] + SLPOc+ A/2) 1| Py -

Above, J(0) is the classical Fisher information [19] for the
measurement distribution P(6),

+J

TO= 3 pal0) 5 mp®)

m=—j

2

)

The right side of Eq. (6) comes from a series expansion of

quantifying the distinguishability of one distribution from
another. If we want better-than-even odds in ‘““distinguish-
ing” distribution P(6,) from its neighbor P(6,) after
one measurement, Eq. (3) imposes a lower bound
S[P(6,) || P(6,)] > 1. Relative entropy has been employed
before [10] in the context of a “maximum likelihood”
approach to phase estimation, but now we use it to find
the intrinsic fitness of states for this task, without reference
to a particular estimation protocol.

We propose that a global distinguishability for estimat-
ing a phase 6, previously known to exist within a finite
interval A centered on § = y be defined as

A
Dy, A) = 1 /X+ /2

A2 S[P(6y) |l P(6,)]d6,d6,.
01,0,=x—A/2

&)

This is the arithmetic mean of relative entropies between
all pairs of distributions originating within this phase in-
terval. In terms of the upper bounds to probabilities in
Eq. (3), 27%P is a geometric mean. Note also that while
S[P(8)) Il P(6,)] # S[P(6,) || P(6,)], quantity D is sym-
metric; it contains the sum S[P(6,) || P(6,)] + S[P(6,) ||
P(6,)] for all probability pairs.

Parameter A may be considered an a priori precision,
and y an a priori estimate, the mean phase across the A
interval for a uniform prior probability distribution. The
size of A has a pronounced effect on the properties of D.
Since 6 is a cyclic variable, p,,(8) = p,,(6 + 27) and A <
27 is a necessary prerequisite to performing the inversion
{pm(0)} — 6. In addition to translation symmetries there
may exist mirror symmetries (depending on the input state)
and distinguishability will be lower for A intervals inclu-
sive of these symmetry points. A strength of our analysis is
the freedom to operate beyond a restricted neighborhood
like 6 = 0; cf. Refs. [8,15,18].

One may confine 6 to an interval A < 277, given ade-
quate prior phase knowledge. In this case it is quite pos-
sible for a phase uncertainty to be greater after the
measurement than before. This is because the direct mea-
surement of J, is unsharp—such a discretely valued mea-
surement can only impart partial information about the
continuous phase parameter . For vanishingly small A ~
0, then D approaches a local distinguishability

2
A = ST 8/ + T+ /) + 08,
(6)

[
S[P(x = A/2) || P(x ¥ A/2)] about (y * A/2) to second
order in A. The Fisher information gives a measure of the
information contained in the full distribution P(#) about
the parameter 6 [16]. It is also the unique distance metric
on the manifold of probability distributions [20]. With the
knowledge that 7(6) provides the scaling factor of local
distinguishability, we now derive an explicit form in terms
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of the Hamiltonian and the measurements. Taking the
definition, Eq. (7), dropping the explicit # dependence
and substituting p,, = r2,, as defined shortly after Eq. (2),

+J
J=43 i, ®)
m==j
where derivatives with respect to 6 are denoted by an
overdot. If instead one substitutes p,,(0) = i,

+j s
— {/’m '*2+¢m 12 +2'* / 9
\7 m:E_j lﬂ:n m lﬁm lpm ‘pm lpnr ( )

The last term may be evaluated using Eq. (1), ch//;z//m =
(Pglihy) = _l.<l/lg|j;,r X iJAylz,b9> = (ji). The other terms
under the summation of Eq. (9) can be simplified by
putting i, = r, exp{id,},

+Jj
T = 2ip =25 + 273, (10)
m==j
Subtracting 1/4 of Eq. (10) from 1/2 of Eq. (8) gives

+Jj

T/A=TD= Y mdn=U)—(@). A
m=—j

The final term with subscript ¢ denotes a classical mean
with respect to distribution {p,,}, for the square of a ran-
dom variable & taking values ¢,. In analogy with
Ref. [21] the Fisher information for any |i,) is exactly
the discrepancy between quantum rotational energy and
the rotational energy associated with 2j + 1 classical point
objects, one for each m value. Note that Eq. (11) holds in
general for any Hermitian Hamiltonian JAv +> H and for
spin measurements m made along any direction in

Euclidean space, z — 7'

From Eq. (11) we may develop a type of uncertainty
relation connecting #, the Hamiltonian and the measure-
ment basis as follows. An explicit lower bound on the
mean-squared error of an unbiased [22] estimate ¢, on
the true phase 6 is given by the reciprocal of the Fisher
information:

(8¢.)* =1/7(0), 12)

called the Cramér-Rao bound [19]. Therefore, for optimal
6 precision one maximizes the Fisher information [23].
The bound is well known in information theory, having a
general applicability not shared by a popular linearized
error model, 8¢,19¢(J.)/a6| = [(J2) — (J.)*1'/?, [3,5,7.8]
which produces incorrect or inconclusive scaling of ¢,
for certain states |iy) [15,18]. The Cramér-Rao bound
provides a proof of the ‘““Heisenberg” precision limit
[3.4] as follows: For certain input states ¢»,, = 0 and <j§>
is bounded from above by its largest eigenvalue, i.e., j>.
Therefore for a state of 2j = n photons in a MZ interfer-
ometer employing photon counting measurements,
the optimal scaling of precision with photon number is
8¢, = 1/n. This Heisenberg limit is uniguely achieved by

an input
o) = (1j, +j)y + €1, =) /2, (13)

which takes the form of a “NOOQON” state [24] after the first
beam splitter. Traversing the phase element 6§ and second
beam splitter, the state emerges with distribution

_ @A+ (=1 cos{2j(0 + 7/2) — &)

Pul®) 4 — m)i(G + m)!

(14)

Calculation of Eq. (7) gives J(6) = 4> = n?, indepen-
dent of 6. This is an exact result, without additional as-
sumptions or approximations. So in the context of local
distinguishability this NOON state is indeed optimal, and it
has the smallest lower bound on mean-squared phase error.
A caveat is that this result is nonconstructive: no estimation
technique is proposed that might reach the bound [25]. And
despite this local optimality, the NOON distribution has a
periodicity 7/j or 27r/n, causing the distinguishability to
saturate quickly for A > 77/j. Thus, NOON states are
inappropriate given poor prior knowledge about the phase.
But in terms of phase stability, they are the most sensitive
to changes, e.g., in tracking a moving target phase after its
initial acquisition, provided the target is moving slowly
enough.

Let us examine other probe states proposed for interfer-
ometry. For |g)— |j,m),, one can use 2(.73) =
(J?) = (J?), and ¢,, =0 to show in this case J(0) =
2[j(j + 1) — m?], independent of angle [26]. Within this
family of states the m = 0 state [27] gives the best local
distinguishability and precision limit via the Cramér-Rao
bound, 8¢, =[2j(j + 1)]7'/2, lower than the bound
found in [13] for the same state and so-called optimal
phase measurements. The state is one of equal photon
numbers injected at both input modes to the interferometer,
|n/2), ® |n/2),. In contrast, the input state |j, + j), returns
the “standard” limit, 8¢, = 1/4/n for the Cramér-Rao
bound. This is identical to the result for n independent
experiments carried out with a single photon each. It is also
the limit for any single mode state (e.g., coherent light)
combined with the vacuum at the MZ input ports, |¢), ®
|0),. This is expected because |n), ® [0), — |j, +j), is the
n-photon (or spin-j) component of such an input state.

Consider the family of phase states [12,28]

1 U
.) Il my -) ) 15
lj, ») ES] m:Z_je |j, m), (15)

parameterized by real phase y. The MZ transformation is
es|j, vy =1j,y + ). For local distinguishability,
Eq. (11) gives J(0) =3j(j + 1); i.e., phase states have
the same close-to-optimal scaling as the [j, 0), input, but
with a 2/3 prefactor. However, Fig. 2 illustrates that phase
states have much better global distinguishability.
Classical relative entropy is a very useful tool in classi-
fying the fitness of quantum states for phase estimation in

070801-3



PRL 99, 070801 (2007)

PHYSICAL REVIEW LETTERS

week ending
17 AUGUST 2007

X = /2 (shaded black)
X = 3m/4 (shaded grey)
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FIG. 2. Comparing distinguishability D(y, A) in relatively
local (A = 1073) and global (A = 7) regimes for various inputs
|4y). Each scatter point corresponds to a photon number 2j =
n € [5, 50], shaded according to y € {3, %77’ 7r}. Pentagons de-
pict NOON states ({ = 0), triangles |}, 0),, squares |j, + )., and
stars denote phase states of Eq. (15) with y = 7/2. NOON
states exhibit the best local distinguishability, yet in the A = 7
domain their D is small and does not improve with photon num-
ber. In contrast, |j, +;), (corresponding to only one illuminated
input port) has strong global characteristics but poor local dis-
tinguishability. The phase states seem to offer the best compro-
mise performance, as the trail of (black) stars travels the furthest
into the top right corner of the graph. Notice that the choice of y
has a significant effect on distinguishability for finite A.

both local and global contexts. By interpolating between
these two regimes via the a priori phase precision A, it has
become apparent that a probe state i) displaying strong
local distinguishability characteristics may not be optimal
in the context of global phase estimation, and vice versa.
Despite this seeming trade-off between local and global
properties, some input states have been shown to be “jack
of all trades”, in particular, the phase states (Fig. 2). For
each probe state the range of A leading to optimal distin-
guishability, e.g., A < 77/ j for NOON states, may be iden-
tified as a new subwavelength scale parameter.

The proportionality of local distinguishability to Fisher
information has been emphasized, and we derived an ex-
plicit form in terms of a quantum-classical kinetic energy
discrepancy. Using this result a proof of the Heisenberg
precision bound was given, involving no limiting assump-
tions of small phase or large photon number.

For phase estimation protocols with specific global and
local distinguishability requirements, the framework we
have presented is a flexible and powerful tool in finding
an optimal trade-off between sensitivity and photon resour-
ces. As our approach is based on the properties of mea-
surement probabilities it is easily extended to other phase
detection technologies beyond the prototypical case we
consider. Future work should extend the current analysis
to a realistic setting incorporating effects of dephasing,
thermal noise and, most importantly, photon losses.
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