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We prove the equivalence between adiabatic quantum computation and quantum computation in the
circuit model. An explicit adiabatic computation procedure is given that generates a ground state from
which the answer can be extracted. The amount of time needed is evaluated by computing the gap. We
show that the procedure is computationally efficient.
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Introduction.—In the effort to realize a quantum com-
puter, adiabatic quantum computation (AQC) [1] offers a
promising alternative to the standard ‘‘circuit model’’
[2,3]. In comparison to the circuit model, AQC alleviates
the need to perform fast quantum logic operations and
measurements, which is particularly troublesome in the
context of fault-tolerant quantum computation [4]. In
AQC, the answer to a calculation is contained in the ground
state of a quantum Hamiltonian. By placing a system in the
ground state of a simple Hamiltonian and then adiabati-
cally changing until the desired Hamiltonian is reached,
one carries the system into the computationally meaningful
state. The AQC model was known from the outset to be
efficiently simulatable by the standard model [1,5], but for
some time researchers wondered whether AQC could effi-
ciently simulate the standard model.

Recently, a number of relatively complex proofs of the
equivalence between the circuit model and AQC were
given. One proof showed that AQC using Hamiltonians
with long-range five- or three-body interactions, or nearest-
neighbor two-body interactions with six-state particles, can
efficiently simulate the circuit model [6]. This result was
soon modified to qubits with two-body interactions [7,8],
and then it was shown that AQC using qubits with nearest-
neighbor two-body interactions on a 2D lattice can effi-
ciently simulate the standard circuit model [9]. The proofs
in Refs. [6–9] all start from a five-body interaction
Hamiltonian that arises in Kitaev’s quantum NP-complete
‘‘local Hamiltonians’’ problem [10]. They then require a
reduction to two-body Hamiltonians and a proof that the
spectral gap of the AQC Hamiltonian thus constructed is
properly lower bounded. (A simplified construction has
appeared recently, but it leads to a three-body Hamil-
tonian [11].) Let the number of algorithm steps (number
of single- and two-qubit gates) be N. The running time is
O�N5� with five-body interactions and O�N14� with three-
body interactions [6], which was improved to O�N12� with
two-body interactions in Ref. [8] (throughout we use the O
notation to mean ‘‘of order’’). An additional improvement
by a factor of N was given in Ref. [12], where relatively

simple methods were used to provide a lower bound on the
minimal energy gap.

Here we provide an alternative, constructive proof of the
equivalence between the standard circuit model and AQC
that is physically and mathematically transparent, amena-
ble to implementation and yields a running time T of order
�MN�2 or better, where M is the number of qubits. For
example, in the case of Shor’s algorithm for factoring an
L-bit integer using a linear nearest-neighbor qubit array
[13], this translates into T � ��2L� 4��8L4��2 � 256L10

compared to T � �8L4�11 � 1010L44 using the previous
O�N11� scaling. We do this by setting up an explicit
Hamiltonian involving at most two-body, nearest-neighbor
interactions between particles on a 2D lattice. Our con-
struction uses the method of ground state quantum compu-
tation (GSQC), which was independently proposed in
Refs. [14–16] around the same time as AQC and also
studied in Ref. [17]. In contrast to the previous equivalence
proofs [6–9,11], our proof does not rely on Feynman’s
‘‘global clock particle’’ idea. Instead, we synchronize the
particles locally via CNOT gates.

In GSQC, one executes an algorithm by producing a
ground state that spatially encodes the entire temporal
trajectory of the algorithm, from input to output. This
requires N times as much hardware but provides some
robustness against decoherence. GSQC was deliberately
constructed to simulate the standard model [14]. However,
little attention was devoted to the process of reaching the
desired ground state. Here, we marry together AQC and
GSQC. The result is a formalism supplying an explicit
Hamiltonian H�s� acting on qubits with at most two-body
nearest-neighbor interactions for any algorithm formulated
in the circuit model. The initial Hamiltonian H�0� and its
ground state are simple. The intermediate Hamiltonian
H�s� (0 � s � 1) has a gap and a nondegenerate ground
state for all s (the dimensionless time). The final
Hamiltonian H�1� has a ground state containing the solu-
tion to the algorithm. Using the adiabatic theorem, we
provide an upper bound on the time needed to reach
H�1� while keeping the system in its ground state. This
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bound scales polynomially in the algorithm steps and
qubits; the calculation is efficient.

Single qubit.—The ground state that contains the result
of a given standard algorithm is specified as follows [14].
First consider a particularly simple computation involving
only a single qubit with basis states j0i and j1i. In the
circuit model the qubit evolves through N � 1 time steps:
its initial state and a state after each algorithm step. If the
initial state is j0i and algorithm step i consists of applica-
tion of a 2� 2 unitary gate Ui, then the two amplitudes at
time step i appear in the state Ui 	 	 	U1j0i, where 1 � i �
N. Since there are two amplitudes at each of the N � 1
steps, the whole trajectory can be described by giving
2�N � 1� complex amplitudes. In GSQC, instead of a
time-dependent state in a two-dimensional Hilbert space,
the qubit has a time-independent state in a 2�N �
1�-dimensional Hilbert space, with basis states cyi;0jvaci

and cyi;1jvaci, i 
 0; . . . ; N. Here, cyi;x (ci;x) is a fermionic
creation (annihilation) operator for a particle in state x 2
f0; 1g in mode i 2 f0; 1; . . . ; Ng. The amplitude of the time-
independent wave function in basis state cyi;0jvaci

(cyi;1jvaci) contains the amplitude of the time-dependent
system in the basis state j0i (j1i) after algorithm step i.

To illustrate this with a concrete physical system, imag-
ine a two-dimensional array of quantum dots with N � 1
columns and 2 rows. Column i contains one state localized
on the dot in the left row (cyi;0jvaci) and one on the dot in
the right row (cyi;1jvaci). One spin-polarized electron is
placed in the array; its state is a superposition of the 2�N �
1� localized states.

It is convenient to group creation operators into row
vectors Cyi � �c

y
i;0c
y
i;1�. Then, the (unnormalized) ground

state containing the results of the algorithm is

 j�Ni 


�
Cy0

1

0

� �
� Cy1U1

1

0

� �
� 	 	 	

� CyNUN 	 	 	U1
1

0

� ��
jvaci:

The results, stored in the states cyN;0jvaci and cyN;1jvaci, can
be extracted reliably [16]. To execute the GSQC, one
realizes a specific Hamiltonian H�1� whose ground state
is the time-independent state we have identified. When the
computation involves a single qubit, the Hamiltonian takes
the form H�1� 


PN
i
1 h

i�Ui�, where

 hi�Ui� � E�Cyi � C
y
i�1U

y
i ��Ci �UiCi�1�; (1)

and where E sets the energy scale. Here we have used the
quadratic form Cyi VCj 


P
x;y2f0;1gvxyc

y
i;xcj;y, where vxy

are the matrix elements of V. In the quantum dots illus-
tration mentioned above, H�1� controls the on-site energy
of each dot and the tunneling coupling between each dot
in one column and each dot in the next column. One
can confirm j�Ni is an eigenstate with eigenvalue 0

[H�1�j�Ni 
 0]; since every term (1) is clearly positive
semidefinite, j�Ni is the ground state [18].

We have a time-independent state that contains the result
of any given standard algorithm for one qubit and is the
ground state of a known Hamiltonian H�1�. Now we show
that placing the system in this ground state can be done
efficiently via the method of AQC, which constitutes a
proof that AQC can simulate the circuit model (for a single
qubit). To do so we introduce the Hamiltonian H�s� 
PN
i
1 h

i���s�Ui�, where �: s 2 �0; 1�� �0; 1�, such that
��0� 
 0 and ��1� 
 1. If � 
 0, then hi�0� 
 ECyi Ci
reduces to a simple on-site energy term. There is then no
tunneling from algorithm step i to algorithm step i� 1. If
� 
 1, we recover H�1� 


PN
i
1 h

i�Ui� with hi�Ui� being
the full operator (1).

The (unnormalized) ground state of H�s� is simply j�Ni
as written above, but with a factor of ��s� in front of each
unitary operator Ui. Alternatively, the ground state is given
by the recursion relation

 j�j�s�i 
 f1� Cyj ���s�Uj�Cj�1gj�
j�1�s�i: (2)

Intuitively, the state of a j step calculation, j�j�s�i, is
formed by adding to the state of a j� 1 step calculation
j�j�1�s�i a term which annihilates the particle at j� 1 and
creates a particle at j with ��s�Uj applied to its state. The
initial input state is simply

 j�0�s�i 
 Cy0
1

0

� �
jvaci:

The wave function is localized on the input row when
� 
 0. As � increases, the on-site energy rises on rows
0; . . . ; N � 1. The tunneling matrix elements in (1) also
begin to turn on, and the ground state wave function starts
to spill into all states cyi;0jvaci and cyi;1jvaci. When �
reaches 1, the wave function reaches its final form.

The traditional statement of the adiabatic theorem [19] is
that the increase in ��s� must be sufficiently gradual that
the system does not transition to an excited state as s goes
from 0 to 1. If the time to take s from 0 to 1 is T, transi-
tions are suppressed if T 
 @maxsjh�N�s�j

dH�s�
ds j�

N�s�ij=
�E��s� � E��s��2, where j�N�s�i is any excited eigenstate
of H�s�, and E��s� is its energy. Recent work has empha-
sized that this is not necessarily the right condition, since
what really matters is not suppression of transitions
throughout the entire adiabatic quantum algorithm, but
rather that the overlap between the ground state of H�1�
and the final adiabatic wave function be large [20,21]. An
adiabatic condition arises of the form T 
 @O��E�1

min�,
where �Emin is the minimum energy gap between the
ground and first excited state, as s goes from 0 to 1
[20,21]. Here we use this latter condition to prove that
AQC can simulate the circuit model efficiently; we omit
the (similar but more complicated) proof that uses the
traditional adiabatic condition. It is, however, necessary
to use knowledge of the gap structure (e.g., position of
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�Emin as a function of s) in order to achieve the running
time T 
 @O��E�1

min�. For this reason the position of the
minimum gap �Emin is given below.

To compute the minimum gap for an N � 1 step calcu-
lation, we look for solutions of D2

N�1�
�E� 
 0, where

D2
N�1 � det�H�s�=E � �E�, H�s� is the 2�N � 1� � 2�N �

1� Hamiltonian matrix, and �E � E=E. We first make a
unitary transformation to new operators ~Ci �
�Uyi 	 	 	U

y
1 �Ci, which transforms H�s� 


PN
i
1 h

i���s�Ui�

to
PN
i
1 h

i��I�, where I is the 2� 2 identity matrix.
Writing out the matrix H�s�, we find the iterative relation
DN�1 
 �1� �2 � �E�DN � �2DN�1. The solutions to
DN�1 
 0 identify the exact single-qubit eigenenergies,
which we find to be E0;s 
 0 and En;s 
 E��1� ��s��2 �
2��s��1� cos �n

N�1�� for n 
 1; . . . ; N. By minimizing the
first excited state energy E1;s with respect to �, one sees
that E1;s � Esin2 �

�N�1� 
 EO�1=N2�. The single-qubit
minimum occurs when ��s� 
 cos �

N�1 . (This can also be
used to estimate the position of the minimum in the
multiple-qubit case below.) Thus �Emin 
 E1;s � E0;s 

EO�1=N2�, and the simulation time is T 
 @O��E�1

min� 

�@=E�O�N2�. This is polynomial, so we see AQC can
efficiently simulate the circuit model.

Multiple qubits.—The recursion relation (2) generalizes
immediately to algorithms involving M noninteracting
qubits: j�j�s�i 
 �M

A
1�1� C
y
A;j��UA;j�CA;j�1�j�

j�1�s�i,
where

 j�0�s�i 
 �M
A
1C

y
A;0

1

0

� �
jvaci:

The multiple-qubit Hamiltonian is just the sum of the
single-qubit HamiltoniansH�s�


PM
A
1

PN
i
1h

i
A���s�UA;i�;

one can verify that H�s�j�N�s�i 
 0 for arbitrary �. The
AQC procedure for noninteracting qubits simply involves
the single-qubit procedure applied independently to each.

Now, we allow the qubits to interact via two-qubit
gates such as a controlled-NOT (CNOT). Suppose the
algorithm specifies a CNOT gate between qubits A and B
at step j. Then, instead of applying the factors �I �

CyA;j��UA;j�CA;j�1� and �I � CyB;j��UB;j�CB;j�1� to
j�j�1�s�i, we write

 j�j�s�i 
 �I � cyA;j;0�cA;j�1;0C
y
B;j��I�CB;j�1

� cyA;j;1�cA;j�1;1C
y
B;j���x�CB;j�1�j�

j�1�s�i:

If qubit A is in state 0, this operator applies [I �
CyB;j��I�CB;j�1] to qubit B. This is just the usual recursion
relation factor that subjects qubit B to an IDENTITY gate.
The factor for a NOT gate, �I � CyB;j���x�CB;j�1�, is ap-
plied to B if A is in state 1.

When a CNOT gate is present, H�s� needs to be changed
so that we still have H�s�j�N�s�i 
 0. One replaces terms
hjA��UA;j� and hjB��UB;j� in H�s�, with two-body interac-
tions

 hjA;B��; CNOT� 
 hjA;B�ID� � h
j
A;B�N� � h

j
A;B�P�: (3)

Here hjA;B�ID� 
 E�CB;jcA;j;0 � �2CB;j�1cA;j�1;0�
y �

�CB;jcA;j;0 � �2CB;j�1cA;j�1;0�, and hjA;B�N� 


E �CB;j cA;j;1 � �2 �x CB;j�1 cA;j�1;1 �
y �CB;j cA;j;1 �

�2�xCB;j�1cA;j�1;1� are two-particle analogues of the
one-particle IDENTITY gate hjA��I� and NOT gate
hjA���x� defined by (1). The third term hjA;B�P� 

E
P
i<j;k�jC

y
A;iCA;iC

y
B;kCB;k � C

y
A;kCA;kC

y
B;iCB;i imposes an

energy penalty on states in which one qubit has gone
through the CNOT gate without the other. Since
hjA;B��; CNOT� is positive semidefinite with all other terms
in H�s�, verifying H�s�j�N�s�i 
 0, one sees j�N�s�i is
the ground state.

To determine the effect of a CNOT gate on the gap,
consider first a simple calculation with M 
 2 qubits and
a single CNOT at row j. Divide the Hamiltonian into H 

H0 �H1, where H1 is just the CNOT gate (3) and H0

contains all of the single-qubit terms. We know all of the
exact eigenstates and eigenvalues of H0 from the single-
qubit analysis of DN�1 above. If the interaction H1 were
absent, the qubits would simply occupy these eigenstates
ofH0 independently. Let jZi be a two-qubit state satisfying
H0jZi 
 0, where both qubits are in zero-energy ground
states. Let j �Zi be a state in which at least one qubit is
excited. Our single-qubit analysis of DN�1 yields the exact
result h �ZjH0j �Zi � Esin2 �

�N�1� 
 EO�1=N2�.
The CNOT Hamiltonian H1 couples these eigenstates of

H0. It can be diagonalized analytically [22] in the small
basis of ground states jZi; for all states jZi orthogonal to
the computationally meaningful j�N�s�i, we find
hZjHjZi 
 hZjH1jZi 
 EO�1=N2�. This exact result will
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FIG. 1. Minimum gap in units of E for a two-qubit system of N
steps, 4 � N � 14. Results are shown for computations that
entangle the two qubits into a Bell state and then disentangle
them. A string of single-qubit gates is also included at one of
three stages of the computation. The minimum gap is roughly a
linear function of 1=N2.
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be used momentarily to derive a lower bound of the true
gap. But first, it supplies a rigorous variational upper bound
of the true gap (because the small number of jZi states are
not a basis for the full �2�N � 1��2-dimensional Hilbert
space), and it is also a good estimate of the exact energy
gap, as supported by the two-qubit numerical calculation
shown in Fig. 1. As a result, AQC requires a time T 

�@=E�O�N2�. While this estimate is intuitively correct and
numerically verified, what we need for our equivalence
proof is a lower bound, which we now show is EO�1=N4�.
To obtain this bound, note that an arbitrary excited state of
H 
 H0 �H1 can be written as �jZi � �j �Zi for some
unique normalized jZi and j �Zi. Since H1 is positive semi-
definite, we find hZjH1jZih �ZjH1j �Zi � jhZjH1j �Zij2. Given
this inequality, we minimize hHi with respect to � and �
and find

 hHi � hZjHjZih �ZjH0j �Zi=�hZjHjZi � h �ZjHj �Zi�: (4)

(This is most easily derived by computing the lowest
eigenvalue of the two-by-two matrix H in the jZi, j �Zi
basis.) We can estimate the numerator using the
EO�1=N2� bounds on h �ZjH0j �Zi and hZjHjZi stated above.
Since the denominator of (4) certainly does not increase
with N, the energy hHi is at least EO�1=N4�.

A similar argument works even when the system has
many qubits and many CNOT gates. We write the many-
qubit Hamiltonian asH 
 H0 �H1, whereH1 includes all
of the CNOT gates (3) andH0 contains all of the single-qubit
terms. The exact eigenstates and eigenenergies of H0 are
immediately known from the single-qubit analysis. An
arbitrary state can be written �jZi � �j �Zi, where in jZi
all qubits are in ground states of H0, while in j �Zi there is at
least one excited qubit. We still have h �ZjH0j �Zi �
Esin2 �

�N�1� 
 EO�1=N2�. We can also show that
hZjHjZi � EO�1=N2�, since for each term in jZi there is
always at least one CNOT gate that contributes to its energy.
Using (4), we find the same EO�1=N4� bound on hHi. To
facilitate extraction of the results of the computation, it is
important that when the system is measured every qubit
has a large amplitude on the final row N. As Ref. [15]
shows, it is straightforward to rescale tunneling to the final
row of the computation to ensure this happens. However,
the reduction of qubit amplitude at earlier stages of the
calculation leads to a reduction of the gap. The estimate/
upper bound becomes EO�1=N2M� and the lower bound is
EO�1=N4M2�.

We have presented an explicit adiabatic procedure that
will carry a system adiabatically into a ground state con-
taining the result of an arbitrary standard quantum compu-
tation. Ref. [16] shows how to use quantum teleportation to
trade an arbitrary GSQC with N steps and M qubits for a
different GSQC with 7 steps, �2N � 1�M qubits. Once the
Hamiltonian is adjusted to facilitate extraction of the re-
sults [15], the running time of the new calculation is T 

�@=E�O�N2M2�. The upper bound/estimate of the gap

yields T 
 �@=E�O�NM�, which is proportional to the
‘‘volume’’ of the algorithm.
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