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We address the problem of removing correlation from sets of states while preserving as much local
quantum information as possible. We prove that states obtained from universal cloning can only be
decorrelated at the expense of complete erasure of local information (i.e., information about the copied
state). We solve analytically the problem of decorrelation for two qubits and two qumodes (harmonic
oscillators in Gaussian states), and provide sets of decorrelable states and the minimum amount of noise to
be added for decorrelation.
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The laws of quantum mechanics impose a number of
restrictions on the processing of quantum information.
Examples of such impossible tasks are provided by the
famous no-cloning theorem [1] or by the theorem on non-
existence of the universal-NOT gate [2]. Despite their dis-
couraging appearance, such limitations can sometimes be
proved useful. This is the case with the no-cloning theorem
which is at the core of quantum cryptography, as it prevents
an eavesdropper from creating perfect copies of a trans-
mitted quantum state.

In this Letter we attempt to broaden our understanding
of the limitations imposed on the quantum information
processing, by investigating the possibility of decorrelat-
ing quantum states—i.e., removing unwanted correlations
between quantum subsystems while preserving local infor-
mation encoded in each of them.

To be more specific, we say that an operation D faith-
fully decorrelates an N-partite state � if the following
equation holds

 D ��� � �1 � . . . � �N; (1)

where �i is the ith party reduced density matrix of �. Now,
the problem of decorrelability can be stated as follows:
given a set of states S � f�g, we ask whether there exists a
single physically realizable operation (completely positive
map) D that satisfies (1) for every state � in S.

Analogously, as in the case of the no-cloning theorem,
the answer will strongly depend on the chosen set of states.
In particular, if the set S consists of only one element �,
then the problem of decorrelability is trivial. One can al-
ways choose D to be a map producing �Ni�1�i out of any
input. Such a map is completely positive and hence every
single-element set is decorrelable.

Moving to the other extreme, and asking whether a set S
consisting of all density matrices is decorrelable, one finds
out that due to linearity of quantum mechanics it is not [3].
Actually, from the proof of [3] one can easily draw a
stronger conclusion, namely, the following: If a set S

contains the states �0, �00 and their convex combination
��0 � �1� ���00, and the reduced states of �0 and �00 are
different at least for two parties, then faithful decorrelabil-
ity of the set S is impossible.

Moreover, in [3] nondecorrelability of certain two-
element sets was shown using the fact that after decorre-
lation distinguishability of states cannot increase (see also
[4] for some results on disentangling rather than decorre-
lating states). Apart from the above particular cases, very
little is known on the decorrelability of general sets of
quantum states. In this Letter we search for explicit solu-
tions to the decorrelation problem in interesting settings.

The key factor for deciding on decorrelability and non-
decorrelability is the choice of the set of states. In this
Letter such a choice is motivated by the need of consider-
ing the problem of decorrelation in the information-
processing context. We stress that we decorrelate quantum
states by keeping the quantum signals. We propose the
following paradigm.

Consider an N-partite correlated ‘‘seed’’ state �, which
should be regarded as the initial state where information is
encoded. Let Ug be a unitary representation of a group G,
acting on the Hilbert space of a single party. The repre-
sentation describes the encoding procedure of a piece of
information (the group element g) on the state of a sub-
system. Acting with unitary operations Ug1

� . . . �UgN on
the seed state � should be regarded as encodingN pieces of
information (N signals [5]) g � �g1; . . . ; gN� 2 GN:

 �g :� Ug1
� . . . �UgN�U

y
g1
� . . . �UygN : (2)

The above state is clearly correlated due to the correlation
of the seed state �. The problem of decorrelation is to find a
single operation D that would decorrelate [see Eq. (1)] all
states belonging to the set

 S�Ug; �� � f�g;8g 2 GNg: (3)

If we have additional constraints on the signals (e.g., we
know that they are identical g1 � . . . � gN) the above set
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is smaller, and eventually the problem of decorrelation
becomes easier. Notice that the reduced density matrices
of �g are related to the reduced density matrices of � by
Ugi�iU

y
gi , and as a result the decorrelated state still carries

the same signals as the initial one. We stress that we do not
deal here with decorrelation of signals, but rather with
decorrelation of states carrying them (hence, there is no
contradiction in performing decorrelation and still claim-
ing, e.g., that the encoded signals are identical).

To motivate our work further let us recall some facts
about cloning and state estimation. We know that quantum
information cannot be copied or broadcast exactly, due to
the no-cloning theorem. Nevertheless, one can find ap-
proximate optimal cloning operations which increase the
number of copies of a state at the expense of the quality. In
the presence of noise, however, (i.e., when transmitting
‘‘mixed’’ states), it can happen that we are able to increase
the number of copies without losing the quality, if we start
with sufficiently many identical originals. Indeed, it is even
possible to purify in such a broadcasting process—the so-
called superbroadcasting [6]. Clearly, a larger number of
copies cannot increase the available information about the
original input state, and this is due to the fact that the final
copies are not statistically independent, and the correla-
tions between them limit the extractable information [7]. It
is now natural to ask if we can remove such correlations
and make them independent again (notice that in this
decorrelation problem, the signals gi—which in this case
correspond to the cloned states—are identical). Clearly,
such quantum decorrelation cannot be achieved exactly,
otherwise we would increase the information on the state.
A priori it is not excluded, however, that it is possible to
decorrelate clones at the expense of introducing some
additional noise. One of the results of this Letter is that
clones by universal cloning cannot be decorrelated even
within this relaxed condition. Apart from this negative
result, we provide in this Letter examples of states for
which decorrelation is possible.

Thanks to the structure of the set of states (3) that we
want to decorrelate, a covariant decorrelation must satisfy
the following conditions: (i) D decorrelates the seed state;
(ii) D fulfills the covariance condition

 D �Ug1
� . . . �UgN�U

y
g1
� . . . �UygN �

� Ug1
� . . . �UgND���U

y
g1
�UygN : (4)

We will more generally consider decorrelation with addi-
tional noise on the output local states, namely,

 D ��� � ~�1 � . . . ~�N; (5)

where ~�i � �i. As a result, subsystems are still perfectly
decorrelated, but some information about reduced density
matrices is lost. Additionally, in what follows we will
assume that the seed state is permutationally invariant—
in other words we treat all encoded signals on equal foot-

ing. This simplifies the situation since in this case all single
party reduced density matrices of the seed state are equal
and the same should hold for the noisy reduced density
matrices after decorrelation. This assumption allows us,
without loss of generality, to impose permutational covari-
ance on the decorrelating operation D.

We now present the solution for some interesting bipar-
tite situations. We analyze qubits, in which information is
encoded through general unitaries in SU�2�, and qumodes
(harmonic oscillators in Gaussian states), with information
encoded by the representation of the Weyl-Heisenberg
group of displacements. In our analysis we consider the
two situations in which the unitaries representing signals
on the two systems are either independent or equal. The
latter case is relevant for the decorrelability of output states
of cloning and broadcasting machines. It turns out that
decorrelation is indeed possible in some cases, at the
expense of increasing local noise. The optimal decorrelat-
ing map adding the minimum amount of noise is derived in
the qubit case, and the optimal depolarization factor is
evaluated as a function of the input seed state. For
Gaussian states we show that it is always possible to erase
correlations by means of a suitable Gaussian map.

Consider a couple of qubits A and B. Permutational
invariance of the seed state means that it is block diagonal
with respect to singlet and triplet subspaces. For qubits the
state is conveniently described in the Bloch form. Without
loss of generality we may assume that the reduced density
matrices �A � �B �

1
2 �1� ��z� of the seed state �AB are

diagonal in the�z basis. The information (�,�) is encoded
via the action of U��� �U���:

 �AB��;�� � U��� �U����ABU���
y �U���y; (6)

where � and � are elements of SU�2�. In other words it is
encoded on the direction of the Bloch vectors nA��� and
nB��� of the marginal states

 �A��� � TrB��AB��;��� �
1
2�1� �nA��� 	 ��;

�B��� � TrA��AB��;��� �
1
2�1� �nB��� 	 ��;

(7)

where � � ��x; �y; �z� is the vector of Pauli matrices.
Covariance of the decorrelation map means that the direc-
tion of the Bloch vectors nA��� and nB��� should be
preserved in the output states, i.e.,
 

~�A��� �
1
2�1� ~�nA��� 	 ��;

~�B��� �
1
2�1� ~�nB��� 	 ��;

(8)

namely only the length of the Bloch vector (i.e., the purity
of the state) is changed �! ~�. The additional noise of the
output states corresponds to a reduced length of the Bloch
vector ~�< �. The directions of the Bloch vectors nA���
and nB��� are completely arbitrary. The optimal decorre-
lation map will maximize the length ~� of the Bloch vector;
namely, it will produce the highest purity of decorrelated
states. It can be shown [8] that the general form of a two-
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qubit channel D covariant under U��� �U��� and invari-
ant under permutations of the two qubits can be parame-
terized with three positive parameters only (effectively two
due to normalization)

 D ��AB� � a�AB � bD1��AB� � cD2��AB�; (9)

where D1 and D2 are given by

 D 1��AB� �
1
3��A � 1� 1 � �B � �AB�; (10)

 D 2��AB� �
1
9�41 � 1� 2�A � 1� 21 � �B � �AB�;

(11)

and the trace preserving condition gives a� b� c � 1.
This is a very restricted set of operations, due to the fact
that the covariance condition is very strong. As a conse-
quence the condition for decorrelating the seed state

 D ��AB� � ~��2 � �12�1� ~��z��
�2 (12)

cannot be satisfied for a generic seed state �AB (apart from
the trivial decorrelation to a maximally mixed state).

The seed states for which nontrivial decorrelation is
possible [which means that we can find such a, b, c and
~�> 0 satisfying Eq. (12)] have the form [8]

 �AB �
1
4�1 � 1� ���z � 1� 1 � �z� � ��z � �z�:

(13)

We emphasize that for a generic seed state �AB one can
reduce correlations, but only sets arising from the seed
state of the form (13) can be decorrelated completely in a
nontrivial way (apart from the cases when � � 0 or � �
0). The noise of the decorrelated states depends on parame-
ters � and � as depicted in Fig. 1.

In order to study the decorrelability of the output states
of cloning machines, we consider now the case where the
same unitary is encoded on the two qubits (identical sig-
nals). Differently from the case of independent signals, D
has to be covariant with respect to U����2, which is a
weaker condition than covariance with respect to U��� �
U���. Using the methods from [6] one can parameterize
these class of operations with six parameters sj;l;J satisfy-
ing two constraints, so effectively one enjoys a four pa-
rameter freedom on covariant operations. Thanks to this
larger freedom it can be shown [8] that the decorrelation
condition D��AB� � ~��2 is non trivially satisfied (i.e. for
~�> 0) for a generic state �AB which is diagonal in the
singlet triplet basis. Such a state can be written in the form

 �AB � pj��ih��j � �1� p��sym; (14)

where �sym is a state supported on the triplet (symmetric)
subspace, and j��i is the singlet state. Analogously to
Eq. (13), �sym can be written with the help of Pauli matri-
ces

 

�sym �
1
4�1 � 1� ���z � 1� 1 � �z�

� �1� ��=2��x � �x � �y � �y� � ��z � �z�:

(15)

The only states that cannot be nontrivially decorrelated are
those with either p � 1 or � � 0 or � � �1=3. For p � 0
(i.e., for seed states supported on the symmetric space) the
plot for achievable ~� is analogous to Fig. 1, but now the
black horizontal line containing nondecorrelable states
lays at � � �1=3. Interestingly, these nondecorrelable
states are states which can be obtained via universal clon-
ing machines producing two copies out of one copy of a
qubit state. Hence, clones obtained by 1-to-2 universal
cloning cannot be nontrivially decorrelated.

Such a result can be shown in general for N-to-M
universal cloning of d-dimensional systems (qudits) along
the following lines. Without loss of generality, we can
restrict ourselves to M � N � 1 and consider cloning of
pure states [9]. The universal covariance of the cloning and
decorrelation procedure implies that for every pure state
j�i of a qudit the desired transformation has the form

 ���j�ih�j��N� �
�
�j�ih�j �

1� �
2

1

�
�N�1

(16)

The transformation (16) is only possible for� � 0. Indeed,
let us consider these transformation for ‘‘equatorial
states’’, i.e., j�i � �j0i � ei�j1i�=

���
2
p

, where j0i, j1i are
some arbitrary orthogonal states. If � � 0 entries of the
operator on the right hand side of (16) are polynomials of
degree at most N � 1 of e
i� (and some entries actually
achieve this degree). On the other hand, thanks to linearity
of �, the entries on left-hand side are polynomials of
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FIG. 1. Length ~� of the Bloch vectors of the decorrelated
states of two qubits starting from the joint state in Eq. (13).
The plot depicts the maximal achievable ~� in gray scale versus
the parameters � and � of the input state.
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degree at most N of e
i�. Since equality (16) should be
satisfied for all phases � we arrive at a contradiction, since
no polynomial of degree N can be equal to a polynomial of
degree N � 1 in an infinite number of points. The above
reasoning holds true also for asymmetric cloning with
different � for each output, where one can prove that at
least one coefficient � must be null [10].

We consider now the case of decorrelation for qumodes.
For a couple of qumodes in a joint seed state �AB the
information (�, �) (with � and � complex) is encoded
as follows

 D��� �D����ABD���
y �D���y; (17)

D�z� � exp�zay � z�a� for z 2 C denoting a single-mode
displacement operator, a and ay being the annihilation and
creation operators of the mode. Here we show that it is
always possible to decorrelate any joint state of the form
(17), with �AB representing a two-mode Gaussian state,
namely,

 �AB �
1

	4

Z
d4qe��1=2�qTMqD�q�; (18)

where q � �q1; q2; q3; q4�, D�q� � D�q1 � iq2� �D�q3 �
iq4�, and M is the 4� 4 (real, symmetric, and positive)
correlation matrix of the state, that satisfies the Heisenberg
uncertainty relation [11] M� i

4�  0, with � � �2
k�1!

and

 ! �
0 1
�1 0

� �
:

A Gaussian decorrelation channel covariant under
D��� �D��� is given by

 D ��� �

����������
detG
p

�2	�2
Z
d4xe��1=2�xTGxD�x��Dy�x�; (19)

with suitable positive matrix G [8], and the resulting state
D��AB� is still Gaussian, with a new block-diagonal co-
variance matrix ~M, thus corresponding to a decorrelated
state.

A special example of Gaussian state of two qumodes is
the so-called twin beam, which can be generated in a
quantum optical lab by parametric down-conversion of
vacuum. In this case M is given by

 M �
1� �2

1� �2 1�
2�

1� �2

0 �z
�z 0

� �
; (20)

with 0 � � < 1. The map (19) with

 G �
2�

1� �2

�
1�

" �z
�z "

� ��
; (21)

and arbitrary " > 0, provides two decorrelated states with
~M � �1��1��� "�1, which correspond to two thermal states

with mean photon number �n � �
1���

"
2 each. Since the

channel in Eq. (19) is covariant also for D����2, the above
derivation then holds for the case of encryption with the
same unitary on both qumodes as well.

The striking difference between the qubit and the qu-
mode cases is that for qubits only few states can be
decorrelated, whereas for qumodes any joint Gaussian state
can be decorrelated. This is due to the fact that the covari-
ance group for qubits comprises all local unitary trans-
formations, whereas for qumodes it includes only local
displacements, which is a very small subset of all possible
local unitary transformations in infinite dimension. In par-
ticular it can be checked that unlike qudits, states obtained
via Gaussian cloning of coherent states can be decorrelated
and the no-go proof valid for finite dimensional cases does
not apply here.
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