
Spinor Dynamics in an Antiferromagnetic Spin-1 Condensate

A. T. Black, E. Gomez, L. D. Turner, S. Jung, and P. D. Lett
Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology,

Gaithersburg, Maryland 20899, USA
(Received 6 April 2007; revised manuscript received 8 June 2007; published 16 August 2007)

We observe coherent spin oscillations in an antiferromagnetic spin-1 Bose-Einstein condensate of
sodium. The variation of the spin oscillations with magnetic field shows a clear signature of nonlinearity,
in agreement with theory, which also predicts anharmonic oscillations near a critical magnetic field.
Measurements of the magnetic phase diagram agree with predictions made in the approximation of a
single spatial mode. The oscillation period yields the best measurement to date of the sodium spin-
dependent interaction coefficient, determining that the difference between the sodium spin-dependent
s-wave scattering lengths af�2 � af�0 is 2:47� 0:27 Bohr radii.
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Atomic collisions are essential to the formation of Bose-
Einstein condensates (BEC), redistributing energy during
evaporative cooling. Collisions can be coherent and revers-
ible, leading to diverse phenomena such as superfluidity [1]
and reversible formation of molecules [2] in BECs with a
single internal state. When internal degrees of freedom are
included (as in spinor condensates), coherent collisions
lead to rich dynamics [3,4] in which the population oscil-
lates between Zeeman sublevels. We present the first
observation of coherent spin oscillations in a spin-1 con-
densate with antiferromagnetic interactions (in which the
interaction energy of colliding spin-aligned atoms is higher
than that of spin-antialigned atoms.)

Spinor condensates have been a fertile area for theoreti-
cal studies of dynamics [5–7], ground states [8,9], and
domain formation [10]. Extensive experiments on the fer-
romagnetic F � 1 hyperfine ground state of 87Rb demon-
strated spin oscillations and coherent control of spinor
dynamics [3,11]. The miscibility of components of oppo-
site spin projection in 23Na demonstrated the antiferromag-
netic nature of the F � 1 ground state [12]. Tunneling
across induced spin striations was also studied in 23Na
[13]. No spin oscillations have been reported in sodium
BEC until now. The F � 2 state of 87Rb is likely antifer-
romagnetic, but a cyclic phase is possible [14,15].
Magnetic control of the amplitude and period of spin
oscillations has been demonstrated for this state [4].

At low magnetic fields, spin interactions dominate the
dynamics. The different sign of the spin-dependent inter-
action causes the antiferromagnetic F � 1 case to differ
from the ferromagnetic one both in the structure of the
ground-state magnetic phase diagram and in the spinor
dynamics. Both cases can exhibit a regime of slow, anhar-
monic spin oscillations; however, this behavior is predicted
over a wide range of initial conditions only in the anti-
ferromagnetic case [7]. The spin interaction energies in
sodium are more than an order of magnitude larger than in
87Rb F � 1 for a given condensate density [3], facilitating
studies of spinor dynamics.

This Letter reports the first measurement of the ground-
state magnetic phase diagram of a spinor condensate, and
the first experimental study of coherent spinor dynamics in
an antiferromagnetic spin-1 condensate. Both show good
agreement with the single-spatial-mode theory [7], which
has a well-developed analytic solution for spin-1 conden-
sates. To study the dynamics, we displace the spinor from
its ground state, observing the resulting oscillations of the
Zeeman populations as a function of applied magnetic field
B. At low field the oscillation period is constant and at high
field it decreases rapidly. At a critical field the oscillation
period diverges, and the amplitude displays a resonance-
like feature, all as predicted by theory [7]. These measure-
ments have allowed us to improve by a factor of 5 the
determination of the sodium F � 1 spin-dependent inter-
action strength, which is proportional to the difference
af�2 � af�0 in the spin-dependent scattering lengths.

The state of the condensate in the single-mode approxi-
mation (SMA) is written as the product ��r�� of a spin-
independent spatial wave function ��r� and a spinor � �
�
�������
��
p

ei�� ;
������
�0
p

ei�0 ;
�������
��
p

ei���. We use ��, �0, and �� (��,
�0, and ��) to denote fractional populations (phases) of the
Zeeman sublevels mF � �1, 0, and 1, so that

P
i�i � 1.

The spinor’s ground state and its nonlinear dynamics may
be derived from the spin-dependent part of the Hamiltonian
in the single-mode and mean-field approximations, subject
to the constraints that total atom number N and magneti-
zation m � �� � �� are conserved [7]. The ‘‘classical’’
spinor Hamiltonian E is a function of only two canonical
variables: the fractional population �0 and the relative
phase � � �� � �� � 2�0. It is given by
 

E � ��1� �0� � c�0��1� �0� �
��������������������������������
�1� �0�

2 �m2
q

cos�	;

(1)

where � � h
 �2:77
 1010 Hz=T2�B2 is the quadratic
Zeeman shift [7] with h the Planck constant. (The linear
Zeeman shift has no effect on the dynamics.) The spin-
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dependent interaction energy is c � c2hni, where hni is
the mean particle density of the condensate and c2 �

4�@2�af�2 � af�0�=3M is the spin-dependent interaction
coefficient [7,16]. Here M is the atomic mass. af�2 and
af�0 are the s-wave scattering lengths for a colliding pair
of atoms of total spin f � 2 and f � 0, respectively. If c2

is positive (negative), the system is antiferromagnetic (fer-
romagnetic). Both the spinor ground state and the spinor
dynamics are determined by Eq. (1).

We produce a BEC of 105 23Na atoms in the F � 1 state,
with an unobservably small thermal fraction, in a crossed-
beam 1070 nm optical dipole trap [17]. The trap beams lie
in the horizontal xy plane, so that the trap curvature is
nearly twice as large along the vertical z axis as in the xy
plane. By applying a small magnetic field gradient with the
MOT coils (less than 10 mT=m) during the 9 s of forced
evaporation, we fully polarize the BEC: all atoms are in
mF � �1. Conservation of spin ensures that the magneti-
zation remains constant once evaporation has ceased; a
state with �� � 1 persists for the lifetime of the conden-
sate, about 14 s.

We then turn off the gradient field and adiabatically
apply a bias field B of 4 to 51 �T along x̂, leaving the
BEC in the �� � 1 state. To prepare an initial state, we
apply an rf field resonant with the linear Zeeman splitting;
typically the frequency is tens to hundreds of kilohertz.
Rabi flopping in the three-level system is observed [18],
and controlling the amplitude and duration of the pulse can
produce any desired magnetization m, which also deter-
mines the population �0. The flopping time is less than
50 �s, much shorter than the characteristic times for spin
evolution. Using this Zeeman transition avoids populating
the F � 2 state, thus avoiding inelastic losses, which are
much greater for 23Na than for 87Rb.

We measure the populations �i of atoms in the three
Zeeman sublevels by Stern-Gerlach separation and absorp-
tion imaging [17]. The Stern-Gerlach gradient is parallel to
the bias field ~B, while the imaging beam propagates in the ẑ
direction. The phase � is not measured.

To measure the phase diagram of the ground state mF �
0 population as a function of magnetization and magnetic
field, we first set the magnetization using the rf pulse. We
then ramp the field to a desired final value over 1 s, wait 3 s
for equilibration, and image as above.

Figure 1(b) displays the measured ground-state mag-
netic phase diagram. The theoretical prediction in
Fig. 1(a) is the population �0 that minimizes the energy,
Eq. (1). Such minima always occur at � � � for antiferro-
magnetic interactions. The single-mode theory is justified
as none of the images showed spatial structure. The pre-
dicted phase diagram was calculated for spin interaction
energy c � h
 20:5 Hz (determined by spin dynamics as
described below). Measurements agree well with the pre-
diction across most of the phase diagram.

The first, magnetic field dependent term of Eq. (1) tends
to maximize the equilibrium �0 population, while the

second, spin-dependent, term tends to minimize �0 for
the antiferromagnetic case. The phase transition indicated
by the thick line in Fig. 1(a) arises where these opposing
tendencies cancel for �0 � 0. Along the transition contour,
�0 rapidly falls to zero. By contrast, the ferromagnetic
phase diagram has �0 � 0 only at m � 1. In the region
B< 15 �T and m> 0:6, there should be virtually no
population in mF � 0 for antiferromagnetic interactions,
and populations up to �0 � 0:34 for ferromagnetic inter-
actions (assuming the same magnitude of c). For our
equilibrium data, the reduced �2 with respect to the anti-
ferromagnetic (ferromagnetic) prediction in this region is 2
(20). This confirms that sodium F � 1 spin interactions are
antiferromagnetic [12].

Across most of the phase diagram, the scatter in the
population is consistent with the density variations ex-
pected from the measured shot-to-shot variation in atom
number. The variance of results is not due to the magnetic
field (calibrated to a precision of 0:2 �T), nor to residual
field variations across the BEC (less than 250 pT).
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FIG. 1 (color online). (a) Theoretical prediction of the ground-
state fractional population �0 as a function of magnetization m
and applied magnetic field B, assuming a spin-dependent inter-
action energy c � h
 20:5 Hz. The thick line lying in the �0 �
0 plane indicates the boundary between the �0 � 0 and the �0 >
0 regions. (b) Measurement.
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Uncertainties in setting the magnetization are obviated, as
the magnetization is measured for each point as the differ-
ence in fractional populations m � �� � ��. The mea-
sured populations agree well with the predictions, except
for the low-field low-magnetization region. There the sys-
tem has not fully equilibrated to the ground state, and the
measurements show greater variance. We observe equili-
bration times (see below) ranging from 200 ms at high
fields to several seconds at low fields, by which time atom
loss is substantial.

If the spinor is driven away from equilibrium, the full
coherent dynamics of the system Eq. (1) are revealed. We
initiate the spinor dynamics with the rf pulse as above, but
now observe evolution over millisecond time scales.

The spinor dynamics are described by the Hamilton
equations for Eq. (1) [7]:

 _� 0 � �
2

@

@E
@�

and _� �
2

@

@E
@�0

: (2)

The system is closely related to the double-well ‘‘bosonic
Josephson junction’’ (BJJ) [19,20] and exhibits a regime of
small, harmonic oscillations and, near a critical field Bc,
is predicted to display large, anharmonic oscillations. At

Bc the period diverges (where ��Bc� � c��1� �0� ���������������������������������
�1� �0�

2 �m2
p

cos�	, with �0 and � taken at t � 0)
[7]. The critical value corresponds to a transition from
periodic-phase to running-phase solutions of Eq. (2). At
the critical value it is predicted that the population is
trapped in a spin state with �0 � 0, a phenomenon similar
to the macroscopic quantum self-trapping observed in the
BJJ [20]. However, very small fluctuations in magnetic
field or density will drive �0 away from 0. Observing a
tenfold increase in the period above its zero-field value
would require a technically challenging magnetic field
stability of better than 100 fT.

Figure 2 plots the period and amplitude of oscillation as
a function of magnetic field. An example of the oscillating
populations is shown in the inset. The spinor condensate is
prepared with initial �0 � 0:50� 0:01 [21] and m �
0:00� 0:02, and a plot of �0 versus time is taken at each
field value. Qualitatively, the period is nearly independent
of magnetic field at low fields, with a small peak near Bc �
28 �T, followed by a steep decline in period. The ampli-
tude likewise shows a maximum at Bc. Oscillations are
visible over durations of 40 to 300 ms. Beyond these times,
the amplitude of the shot-to-shot fluctuations in �0 is
roughly equal to the harmonic amplitude. This indicates
dephasing due to shot-to-shot variation in oscillation fre-
quency, probably associated with the variations in mag-
netic field and condensate density, rather than any
fundamental damping process. At even longer times, we
observe damping and equilibration to a new constant �0;
the damping time varies with magnetic field from 200 ms
to 5 s.

For the theoretical prediction in Fig. 2, the initial values
of �0 and m are obtained experimentally. We treat only c

and ��t � 0� as free parameters; c is also predicted by prior
determinations of c2 and our knowledge of the condensate
density. The initial relative phase is not the equilibrium
value � � �, due to our rf preparation. For a three-level
system driven on resonance and starting with all atoms in
mF � �1, the relative phase is � � 0 at all times during
the rf transition, as we derive from Ref. [18].

The best fit to the data in Figs. 2(a) and 2(b) is obtained
by using c � h
 �21� 2� Hz and ��t � 0� � 0:5� 0:3
(with no other free parameters). Deviation from ��t �
0� � 0 could be due to state preparation: a fraction of
only 2% in the mF � �1 level before the rf pulse can
produce the observed deviation after the pulse. Away from
the critical field Bc, agreement with theory is good. The
fitted value of c implies that Bc is 27 �T, in reasonable
agreement with the apparent peak observed at 28 �T. Our
ability to observe strong variations in period near Bc is
limited by density fluctuations (8%) and magnetic field
fluctuations (0:2 �T). Near Bc typically only one cycle is
visible before dephasing is complete. Such rapid dephasing
can, itself, be taken as evidence of a strongly B-dependent
period, as expected near the critical field.

To include the known fluctuations in density and mag-
netic field in our model, we perform a Monte Carlo simu-
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FIG. 2 (color online). Period (a) and amplitude (b) of spin
oscillations as a function of applied magnetic field, following a
sudden change in spin state. Solid lines are predictions from
solving Eq. (2). The theoretical prediction of the period diverges
at about 27 �T. Shaded regions are�1 standard deviation about
the mean values (from Monte Carlo simulation, see text.) Inset:
Fractional Zeeman population (solid dots) and magnetization
(open circles) as a function of time after the spinor condensate is
driven to �0 � 0:5, m � 0. B � 6:1 �T. The solid line is a
sinusoidal fit.
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lation of the expected signal, based on measured, normally
distributed shot-to-shot variations in values of c, �, m, and
�0�t � 0�. At each value of B in Fig. 2, we simulate 80
time traces, with each point in the time trace determined
from Eq. (2). We fit sine waves to the simulated traces and
record the mean and standard deviation of their amplitude
and period. The results (shaded in Fig. 2) show a less sharp
peak in the period. The smoothing of the peak at Bc is
consistent with our data.

It is clear in Fig. 2 that the oscillation period is insensi-
tive to the magnetic field at low values of the field. In this
regime, the period is sensitive only to the spin interaction
c2 and the density of the condensate hni. Measuring this
period allows us to determine the difference in scattering
lengths af�2 � af�0. The trace inset in Fig. 2 was taken in
this regime, at a magnetic field of B � 6:1 �T, and shows
harmonic oscillations with period 24:6� 0:3 ms. Here
the predicted period dependence on magnetic field,
14 �s=�T, is indeed weak and the oscillations dephase
only slightly over the duration shown. Using this measure-
ment of the period [in which much more data was taken
than for each point making up Figs. 2(a) and 2(b)] and
including uncertainties in initial �, �0, and m, we obtain
the spin interaction energy c � h
 �20:5� 1:3� Hz.

Finding af�2 � af�0 requires a careful measurement of
the condensate density. We take absorption images with
various expansion times to find the mean field energy. The
images yield the column density in the xy plane, and the
distribution in the z direction can be inferred from our trap
beam geometry. We find that the mean density of the
condensate under the conditions of the inset to Fig. 2 is
hni � 8:6� 0:9
 1013 cm�3. From this we calculate
af�2 � af�0 � �2:47� 0:27�a0, where a0 � 52:9 pm is
the Bohr radius. This is consistent with a previous mea-
surement, from induced spin striations, of af�2 � af�0 �

�3:5� 1:5�a0 [12] and is smaller than the difference be-
tween scattering lengths determined from molecular levels,
af�2 � �55:1� 1:6�a0 and af�0 � �50:0� 1:6�a0 [22]. A
multichannel quantum defect theory calculation gives
af�2 � af�0 � 5:7a0 [23].

Finally, we consider the validity of the spatial single-
mode approximation. Spatial degrees of freedom decouple
from spinor dynamics when the spin healing length 	s �
2�@=

�����������������
2mjc2jn

p
is larger than the condensate. Experiments

on 87Rb with one Thomas-Fermi (TF) radius larger than 	s
displayed several cycles of single-mode spin oscillation
before domains formed [3]. From our density measure-
ments we find TF radii of �9:4; 6:7; 5:7� �m. The spin
healing length is 	s � 17 �m; spatial structure formation
should be suppressed. Furthermore, condensates with anti-
ferromagnetic interactions are predicted not to form do-
mains [10,24]. These predictions are confirmed: Stern-
Gerlach absorption images show three components with
identical spatial distributions after ballistic expansion,
even after several seconds of evolution.

In conclusion, we have studied both the ground state and
the spinor dynamics of a sodium F � 1 spinor condensate.
Both agree well with theoretical predictions in the SMA.
By measuring the spin oscillation frequency at low mag-
netic field, we have determined the difference in spin-
dependent scattering lengths. The observed peak in oscil-
lation period as a function of magnetic field demonstrates
that the spinor dynamics are fundamentally nonlinear. It
also suggests the existence of the predicted regime of
highly anharmonic spin oscillations at the center of this
peak, which should be experimentally accessible with
sufficient control of condensate density and magnetic field.
Observation of anharmonic oscillations, as well as popu-
lation trapping and spin squeezing, could be aided by a
minimally destructive measurement of spin projection [25]
to reduce the effects of magnetic field drifts and shot-to-
shot density fluctuations.
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