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We study the ground states of cold atoms in the tight-binding bands built from p orbitals on a two
dimensional honeycomb optical lattice. The band structure includes two completely flat bands. Exact
many-body ground states with on-site repulsion can be found at low particle densities, for both fermions
and bosons. We find crystalline order at n � 1

6 with a
���
3
p
�

���
3
p

structure breaking a number of discrete
lattice symmetries. In fermionic systems, if the repulsion is strong enough, we find the bonding strength
becomes dimerized at n � 1

2 . Experimental signatures of crystalline order can be detected through the
noise correlations in time of flight experiments.
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Optical lattices have opened up a new venue in which to
study strongly correlated systems, with the possibility of
precisely controlled interactions. For example, the
superfluid–Mott-insulator transition [1] for bosons has
been observed. Many interesting states with novel mag-
netic and superfluid properties in optical lattices have also
been proposed by using high-spin bosons and fermions [2].
In addition, optical lattices provide the opportunity for
studying another important aspect of strongly correlated
systems, orbital physics, which plays an important role in
metal-insulator transitions, superconductivity, and colossal
magnetoresistance [3].

Cold atom systems with orbital degrees of freedom
exhibit new features which are not usually realized in solid
state systems. Recently, the properties of the bosons in the
first excited p-orbital bands have attracted a great deal of
theoretical attention [4–9], including predictions of a ne-
matic superfluid state [5], antiferromagnetic ordering of
orbital angular momentum (OAM) [6,7], a striped phase of
OAM in the triangular lattice [8], and a bond algebraic
liquid phase [9]. Experiments carried out by Browaeys
et al. [10] and Köhl et al. [11] have demonstrated the
population of higher orbital bands in both bosons and
fermions. Recently, Fölling et al. have showed the exis-
tence of both the Mott-insulating and superfluid states of
the p-band bosons [12].

The physics of graphene captured by the 2D honeycomb
lattice has generated tremendous interest as a realization of
Dirac fermions [13]. In graphene, the active bands near the
Fermi energy are ‘‘�’’ type, composed of the pz orbitals
directly normal to the graphene plane. The other two p
orbitals (px;y) lie in-plane, and exhibit both orbital degen-
eracy and spatial anisotropy. However, they hybridize with
the s band and the resulting �-bonding band is completely
filled. In contrast, in optical lattices, px;y bands are well
separated from the s band with negligible hybridization,
giving rise to the possibility of interesting new physics.
The honeycomb optical lattice has already been realized

quite some time ago, by using three coplanar laser beams
[14].

In this Letter, we study the px;y-orbital physics in the 2D
honeycomb lattice. We find the lowest energy band is
completely flat over the entire Brillouin zone (BZ). When
the flat band is partially filled, the effects of interactions are
entirely nonperturbative. For sufficient low densities the
ground states are ‘‘Wigner’’ crystals (we slightly abuse this
nomenclature to apply it generally to both bosons and
fermions). We obtain the exact many-body plaquette
Wigner-crystal state at filling hni � 1

6 . For fermionic sys-
tems, we obtain additional crystalline ordered states at
higher commensurate fillings. The noise correlation in
the time of flight image should detect the order in these
states.

We first discuss the single-particle spectrum. The optical
potential on each site is approximated by a 3D anisotropic
harmonic well with frequencies !z � !x � !y � !xy,
and thus the pz orbital is well separated in energy from
the px;y orbitals. Since the honeycomb lattice is bipartite,
we denote by A and B its two sublattices. We define three
unit vectors ê1;2 � �

��
3
p

2 êx �
1
2 êy, ê3 � �êy pointing from

each A site to its three B neighbors. The projection of the
p-orbitals along the three êi�1;2;3 directions are defined as
pi � �pxêx � pyêy	 
 êi. Only two of them are linearly
independent. The kinetic energy reads

 H0 � tk
X

~r2A;i�1–3

fpy~r;ip~r�aêi;i � H:c:g ��
X

~r2A�B

n~r; (1)

where the �-bonding term tk describes the hopping be-
tween p orbitals on neighboring sites parallel to the bond
direction, a is the nearest neighbor distance, and n~r �
n~r;x � n~r;y is the total particle number in both px and py
orbitals at the site ~r. tk is positive due to the odd parity of
the p orbitals and is set to 1 below. Equation (1) neglects
the �-bonding t? which describes the hopping between p
orbitals perpendicular to the bond direction. Typically

PRL 99, 070401 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
17 AUGUST 2007

0031-9007=07=99(7)=070401(4) 070401-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.99.070401


tk=t? � 1 due to the high spatial anisotropy of the p
orbitals. We have numerically confirmed this for the opti-
cal potential realized in experiment V�~r	 �
V0
P
i�1–3 cos� ~pi 
 ~r	, where ~pi � p0êi and p0 �

4�
3a [14].

Namely, t? � 0:02tk and tk � 0:24ER at V0=ER � 5 (ER
is the recoil energy).

The band structure contains both flat bands and Dirac
cones. Each unit cell consists of two sites, each of which
contains two orbitals px;y, resulting in four bands. The BZ
takes the shape of a regular hexagon with edge length
4�=�3

���
3
p
a	. The dispersion of all the bands is symmetric

with respect to the zero energy because of the bipartite
nature of the lattice. The band structure consists of

E1;4� ~k	 � 

3
2 , E2;3� ~k	 � 


1
2

������������������������������������
3� 2

P
i cos ~k 
 ~bi

q
, where

~b1 � a�ê2 � ê3	, ~b2 � a�ê3 � ê1	, and ~b3 � a�ê1 � ê2	.
We show only the two lowest bands E1;2 in Fig. 1, which
touch at the Brillouin zone center. The bottom and top
bands turn out to be completely flat. The two middle bands
are dispersive with a width determined by tk, which are the
same as in graphene with two nonequivalent Dirac points
located at ~K1;2 � ��

4�
3
��
3
p
a
; 0	. We will not repeat the ex-

tensively studied Dirac cone physics here, but rather focus
on the new features brought by the flat bands instead.

The degeneracy of all momentum eigenstates in the flat
bands allows us to take any superposition of these states,
and, in particular, to construct eigenstates that are local-
ized. As depicted in Fig. 2(a), for each hexagon plaquette
~R, there exists one such eigenstate for the bottom band

 j ~Ri �
X6

j�1

��1	j�1fcos�jjpj;xi � sin�jjpj;yig (2)

where j is the site index and �j � �j� 1	 �3 . The orbital
configuration on each site is perpendicular to the links
external to the hexagonal loop. This orbital orientation,
together with destructive interference of hopping ampli-

tudes, prevent the particle from ‘‘leaking’’ off of the pla-
quette. The states j ~Ri are all linearly independent apart
from one constraint

P
~Rj ~Ri � 0 under periodic boundary

conditions. The Bloch wave states are constructed as
j ki1 �

1�����
Nk
p

P
ke
i ~k
 ~Rj ~Ri�

~k � �0; 0	�, with the normaliza-

tion factor Nk �
8
3 �3�

P
i cos ~k 
 ~bi	. The doubly degener-

ate eigenstate at ~k � �0; 0	 cannot be constructed from
the above plaquette states. They are j ~k��0;0	i1;2 �P
~r2Ajpx�y	; ~ri �

P
~r2Bjpx�y	; ~ri.

Because of the orbital degeneracy, the on-site interaction
for spinless fermions remains Hubbard-like as

 Hint � U
X
~r

n~r;xn~r;y: (3)

In order to enhance U between neutral atoms, we may use
the 53Cr atom which has a large magnetic moment of 6�B
(Bohr magneton), and polarize the spin with an external

magnetic field. The length scale of pxy orbitals lx;y �������������������
@=m!x;y

q
is typically one order smaller than a. For ex-

ample, we estimate that lx;y=a � 0:2 at V0=ER � 5.
Assuming strong confinement in the z axis lz � lx;y, the
vector linking two atoms in px and py orbits almost lies in
the plane. U can be adjusted from repulsive to attractive by
tuning the polarization direction from perpendicular to
parallel to the xy plane. We will only discuss repulsive U
below. We estimate that U can easily reach the order of ER
which is much larger than tk. The off-site interactions are
small and decay with distance as 1=r3, and thus are ne-
glected. For example, the nearest neighbor interaction is at
the order of �lx;ya 	

3U � 10�2U. The on-site interaction for
p-band bosons is given in Ref. [6,8].

When the flat band is partially filled, the effect of
interactions is nonperturbative. At sufficiently low particle
density n � 1=6, both the interactions and the kinetic
energy can be minimized simultaneously. This can be
realized if the individual particles localize into the pla-
quette states depicted in Fig. 2(a). These are exact eigen-

2

0

2
kx

2

0

2ky

– 1.5

– 1

– 0.5

0

– 2

0

2
kx

– 2

0
ky

FIG. 1 (color online). Dispersion of the two-lowest px;y-orbital
bands E1;2. The band E1 is completely flat, while E2 exhibits
Dirac points at K1;2 � ��

4�
3
��
3
p
a
; 0	. The other two bands are

symmetric with respect to E � 0.
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FIG. 2 (color online). (a) The Wannier-like localized eigen-
state for the lowest band. The orbital configuration at each site is
oriented along a direction tangential to the closed loop on which
the particle is delocalized. (b) The configuration of the close-
packed Wigner-crystal state for both bosons and fermions at n �
1=6. Each thickened plaquette has the same configuration as
in (a).
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states of the flat band, and therefore minimize kinetic
energy. Any arrangement of the plaquette states where
they do not overlap will cost no interaction energy. These
localized plaquette states therefore constitute exact many-
body ground states. The maximum density (close-packed)
arrangement of nonoverlapping plaquettes has filling n �
1=6, and has the structure depicted in Fig. 2(b). The

���
3
p
����

3
p

structure breaks the lattice translation symmetry and is
threefold degenerate. At zero temperature, the particle
density jumps from 0 to 1=6 as the chemical potential is
increased through � � �3=2. Similar flat band behavior
has been studied in the magnon spectra of a number of
frustrated magnets in a large magnetic field [15] near full
polarization of the magnet. The degenerate states for the
Kagome antiferromagnet are in exact one to one corre-
spondence to those of our model. Thus the two models
have identical thermodynamics (if fluctuations are re-
stricted to these states, as appropriate for kBT � tk, U).
This is described by the classical hard hexagon model [15],
which exhibits a second order thermal phase transition in
the 3-state Potts model universality class, breaking trans-
lational symmetry, when the fugacity of the hexagon zc �
�11�

���
5
p
	=2. In this state, the atoms do not touch each

other, thus particle statistics do not play any role. The
Wigner crystal is also expected to appear for bosons in
this optical lattice at filling n � 1

6 . In contrast, Wigner
crystal is not possible in graphene systems [16].

When the filling n > 1=6, exact solutions are no longer
available for the interacting Hamiltonian. For simplicity, in
this regime we shall only discuss the case of spinless
fermions, within a mean-field treatment. We decouple
Eq. (3) in both the direct and exchange channels as
 

Hmf;int �
U
2

X
~r2A�B

fn~r;x�hn~ri � hn~r;3i� � n~r;y�hn~ri � hn~r;3i�

� py~rxp~ry�hn~r;1i � ihn~r;2i� � H:c:g; (4)

and solve it self-consistently. Here n1;2;3 are the pseudospin
operators defined as n~r;3 �

1
2 �p

y
~rxp~rx � p

y
~ryp~ry	, n~r;1 �

1
2 �

�py~rxp~ry � H:c:	, n~r;2 �
1
2i �p

y
~rxp~ry � H:c:	. The n~r;1; n~r;3

operators are time-reversal invariant, and describe the
preferential occupation of a ‘‘dumbbell-shaped’’ real
p-orbital orientation; n~r;2 is the orbital angular momentum,
and is time-reversal odd. At the mean-field level hn~r;2i is
zero. In order to obtain the plaquette order in Fig. 2, we
take the six sites around a plaquette as one enlarged unit
cell in the mean-field calculation.

The numerically determined phase boundary between
the 1=6 state and a compressible phase at higher density is
shown in Fig. 3. The charge gap grows roughly linearly
with U in the weak interaction regime, and saturates at a
value comparable to tk in the strong interaction regime.
This can be understood as follows: in the weak interaction
case, we choose a plaquette ~R which is adjacent to three
occupied plaquettes ~R1;2;3 as depicted in Fig. 2(b), and put
an extra particle in it. The cost of the repulsion is U6 . In the

strong coupling case, we put the particle into an excited
state of the occupied plaquette ~R1 while fixing the orbital
configuration on each site. Because fermions are spinless,
the cost of energy comes from the kinetic part with the
value of 3

4 tk. Thus the charge gap is �<min�16U;
3
4 tk	

which agrees with the numeric result.
The curves of the filling n vs � in both the weak and

strong coupling regimes are depicted in Fig. 4. In both
cases, the plaquette Wigner state appears as a plateau with
hni � 1

6 . In the weak coupling regime (U=tk � 1), as �
passes the charge gap, hni increases quickly corresponding
to filling up other states in the flat band. Because of the
background crystal ordering, those states are no longer
degenerate, but develop weak dispersion. A significant
reduction in the density of states (DOS) occurs at the
approximately commensurate filling of hni � 1

3 , but it is
not a strict plateau. At hni> 1=2, after the flat band is
completely filled, the interaction effects are no longer
important. Near half-filling, the DOS vanishes where the
physics is dominated by the Dirac cones.

The physics changes dramatically in the strong coupling
regime. We looked specifically at (U=t � 10), where we
found a series of plateaus appear at commensurate fillings
hni � i

6 �i � 1–6	. The large charge gap at hni � 1 is of the
order of U. The other plateaus with hni< 1 are the novel
features the p-orbital model presents. In addition to the
plaquette bond order at hni � 1

6 discussed above, rich
structures including dimer and trimer bond orders appear
at other plateaus with hni< 1. We will present these pat-
terns in detail in a future publication. Here a dimer refers to
a superposition of the two states of two sites where one is
occupied, while the other is empty. The dimerized state at
hni � 1

2 is illustrated in Fig. 5. Each dimer is represented as
a thickened bond where the orbital configuration is along
the bond. We check that the bonding energy for the thick-
ened bond is approximately 0:95tk at U=tk � 10 which is
about one order larger than that of other bonds.

Next we discuss the effect of adding a small �-hopping
t? term. Then the lowest energy band acquires weak
dispersion, with a small band width of t?. This associated
kinetic energy cost for the n � 1

6 plaquette state is of order
t? per particle. A stability condition of this state can

0 2 4 6 8 10
−1.5

−1.4

−1.3

−1.2

−1.1

U

µ

〈 n 〉 =1/6

FIG. 3. The phase boundary of the incompressible plaquette
Wigner-crystal state of spinless fermions at hni � 1

6 .
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therefore be roughly estimated as U
6 > t?. We have

checked numerically that the 1
6 -plateau survives at U > tk

with the value of t? � 0:1tk. Other plateaus appearing in
the strong coupling regime are not sensitive to small t?.

The plaquette Wigner-crystal phase in Fig. 2(b) should
manifest itself in the noise correlation for the time of flight
(TOF) signals. In the presence of the plaquette order, the
reciprocal lattice vector for the enlarged unit cell becomes
~G1 � �

4�
3
��
3
p
a
; 0	 and ~G2 � �

�2�
3
��
3
p
a
; 2�

3a	. The correlation func-

tion is defined as Ct� ~r; ~r0	 � hn�~r	n� ~r0	it � hn�~r	ithn� ~r0	it.
After a spatial averaging and normalization, we find

 Ct� ~d	 �
Z
d~r

Ct� ~r�
~d
2 ; ~r�

~d
2	

hn� ~r� ~d
2	ithn�~r�

~d
2	it
/ �

X
~G

�� ~k� ~G	;

(5)

where � (� ) is for bosons (fermions), respectively, ~k �
m ~d=�@t	, and ~G � m ~G1 � n ~G2 with m, n integers.

There are numerous directions open for further explora-
tion. Some interesting variations on the model are to con-
sider spinful fermions, for which there is a possibility of
ferromagnetism as a result of the flat bands, or attractive
interactions, in which pairing and the BCS-Bose-Einstein
condensation crossover in the flat band might prove inter-
esting. Most intriguing is the possibility of exotic incom-
pressible states analogous to the Laughlin liquid in the
fractional quantum-Hall effect (FQHE). These cannot be

captured within the mean-field approximation used here
for n > 1=6. If one could devise appropriate variational
liquid states projected into the flat band, these could be
compared energetically with the Wigner crystals found
here. Given the richness and surprises encountered in the
FQHE, flat band physics in optical lattices appears rife with
possibility. The comparison with the fermion condensation
where the flat band arises due to strong interactions will
also be interesting [17].
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FIG. 5 (color online). The dimerized state of spinless fermions
with filling hni � 1

2 . Each thickened (red) bond corresponds a
dimer containing one particle.
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FIG. 4. The filling hni vs the chemical potential � for spinless
fermions for weak (a) and strong (b) interactions. Because of
particle-hole symmetry, only the part with � from the band
bottom� 3

2 tk to U=2 is shown. Only one plateau appears in (a) at
n � 1

6 , while a series of plateaus appear in (b) at n � 1=6, 1=3,
1=2, 2=3, 5=6, and 1.
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