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We propose a new type of Josephson junction formed by two superconductors close to the
superconductor–Mott-insulator transition, one of which is doped with holes and the other is doped
with electrons. A self-organized Mott-insulating depletion region is formed at the interface between two
superconductors, giving rise to an asymmetric response of current to the external voltage. The collective
excitations of the depletion region result in a novel phase dynamics that can be measured experimentally
in the noise spectrum of the Josephson current.
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The Josephson effect is one of the most fundamental
effects associated with the superconducting phase,
regardless of differences among various superconducting
materials. In strongly correlated electron systems, many
other quantum phases exist in the vicinity of the super-
conducting phase, which give rise to many salient features
in Josephson junctions. For example, a long range
proximity effect in superconducting-antiferromagnetic-
superconducting (SAS) junctions was predicted [1] based
on the competition between the superconducting and anti-
ferromagnetic phases in high temperature superconductors
[2–5]. An abrupt change of the Josephson critical current
was predicted in the junction arrays near the
superconductor–Mott-insulating phase transitions [6]. In
this Letter, we investigate a new design of the Josephson
junction by taking advantage of the competition between
the superconducting and Mott-insulating phases. The two
sides of the junction are hole and electron-doped super-
conductors, respectively, which are close to the
superconductor–Mott-insulator transition. At the interface,
a self-organized Mott-insulating region is formed as the
tunneling barrier. We dub this junction ‘‘Josephson diode.’’
Similarly to the conventional p-n junctions in semicon-
ductor diodes, the depletion region is suppressed by a
positive bias voltage and elongated by a negative bias
voltage, giving rise to an asymmetric response of the
Josephson current to the external voltage. While the ge-
ometry of the junction is similar to the p-n junctions in
semiconductor diodes, there are fundamental differences.
In the Josephson diode, the depletion region (Mott-
insulator) is formed completely due to the quantum nature
of competing phases. Moreover, the depletion region not
only plays a role of tunneling barrier, but also its quantum
fluctuation reveals important information of strong corre-
lation effects. The fluctuation of the region boundaries
couples to the carrier recombination process which results
in an additional phase dynamics that can be measured
experimentally in the noise spectrum of the Josephson

current. To illustrate the physics of the Josephson diode,
we use the Bose-Hubbard model for charged bosons. The
long range interaction between bosons is approximated by
the self-consistent effective potential V as
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�V�i� ���by�i�b�i�; (1)

where t is the hopping integral, U is the short range on-site
repulsion. In homogeneous systems, V�i� equals zero due
to the charge neutrality maintained by the background
charge, and the phase diagram is well known as shown in
Fig. 1. Mott-insulating phases appear at commensurate
fillings and small values of t=U, which can be doped into
superconducting phases either by particles or holes. The
structure of the Josephson diode is depicted in Fig. 2(a): its
left- and right-hand sides correspond to two points A and B
in Fig. 1, where the particle densities hn�i�i0 � 1� � for i
on the left (right) side, respectively. Because of the chemi-
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FIG. 1. The mean-field phase diagram of the Bose-Hubbard
model. The left (right) side of the junction corresponds to the
states at point A(B).
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cal potential imbalance, bosons diffuse from the right to
left side. Since a Mott-insulating region interpolates be-
tween the hole-doped superconductor A and the particle-
doped superconductor B, it appears across the junction in
the real space as the depletion region depicted in Fig. 2(b).
We define �1�2� as the chemical potentials at the boundary
of the Mott-insulating phase depicted in Fig. 1. Inside this
region, the density hn�i�i is fixed to the commensurate
value 1 and the charge neutrality is no longer kept. The
resulting internal electric field E gives rise a change of the
electric potential �V across the junction to compensate the
local chemical potential difference. As a result, the total
chemical potential � becomes constant. The E field is
given by

 rE�i� � �r2V�i� �
q
�
�n�i� � hn�i�i0�; (2)

where q is the charge of bosons, � is the dielectric constant
and the lattice constant is taken as 1. In the following, we
consider the case that �� � �2 ��1 is much larger than
�1 ��A and �B ��2. In this case, most of the charge
non-neutral region is the Mott-insulating, and we neglect
the contribution to the E field outside the Mott-insulating
region. Then �V across the depletion region can be ap-
proximated as �V 	 �

R
D
�D E�x�dx �

D2q�
� � ��, where

2D is the length of the Mott-insulating depletion region,
thus

 D 	

�����������
���
q�

s
: (3)

Next we discuss the Josephson diode effect under an
external voltage Vex. In the conventional Josephson junc-
tion, the coupling term is given by

 HJ � �J cos
�
�r ��l �

qVext
@

�
; (4)

where the coupling strength J is not sensitive to Vex.
However, the situation in the Josephson diode junction is
quite different. When Vex is applied, it not only creates the
time dependent phase difference across the junction, but
also changes the length of the depletion region. Similarly
to the case of semiconductor diodes, the depletion region is
suppressed (elongated) in the forward (reversed)-biased
junction since the external electric field aligns in the op-
posite (same) direction of the internal electric field. By a
similar reasoning for Eq. (3), we obtain D in the presence
of Vex as D 	

���������������������������������������
����� Vex�=�q��

p
. When D is much

longer than the coherent length �, the Josephson coupling
J is proportional to e���D=��, where � is a dimensionless
constant. Therefore, J as a function of Vex is asymmetric as

 logJ�Vex� /
������������������������������������
���� Vex�=�q��

q
: (5)

which is sketched in Fig. 3. This is a natural generalization
of the effect of the p-n junction in semiconductors. Please
note that when Vex is close to ��, the Mott depletion
region is almost completely suppressed, then Eq. (5) does
not apply.

A major difference between the Josephson and conven-
tional semiconductor diodes is that the charge current is no
longer unidirectional in the former case. In the semicon-
ductor diode, the unidirectional charge transport clearly
breaks time reversal symmetry, which is consistent with its
dissipative nature. In contrast, in the Josephson diode, the
dissipationless transport keeps time reversal symmetry. As
a result, in the zero bias case, the dc Josephson current can
flow either from the p to n side or equivalently well from
the n to p side. At the finite bias, the ac Josephson current
flows back and forth between the two sides. The asymmet-
ric response to the external voltage lies in the magnitude of
the Josephson critical current, which is an effect from the
explicit parity breaking in the structure of the Josephson
diode junction.

FIG. 3. The length of Mott-insulating depletion region D and
the Josephson coupling strength J as a function of the external
voltage Vex (arbitrary unit for the vertical axis).
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FIG. 2. The sketch of the junction: (a) the spatial distribution
of chemical potential before equilibrium is formed, (b) the Mott-
insulating depletion region and charge distribution in equilib-
rium, (c) the potentials Vh and Vd for the holons and doublons
across the junction, respectively.
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In a semiconductor p-n junction, there are the processes
of the diffusion and recombination of charge carriers. The
analog of such processes also exists in the Josephson diode
junction. We introduce the singlon [sy�i�], holon [ayh �i�],
and doublon [ayp�i�] operators for the empty, single and
double-occupied states on the site i, respectively. We limit
the Hilbert space on each site to these three states, which is
a good assumption for the Bose-Hubbard model when the
density is close to 1. In this case, the holons and doublons
are considered as the majority carriers in the left and right
sides, respectively. Since each site can only have one such
boson, these bosons are hard corelike, thus, namely, they
satisfy the following constraint ayhah � s

ys� aypap � 1.
We can rewrite the original boson operators in terms of
these hard core bosons as by � syah � a

y
ps. The density

operator of the original bosons is given by n � byb �
aypap � a

y
hah � 1. The hopping term in this representation

becomes
 

Ht � �t
X
ij

f�ayh �j�ah�i� � a
y
p�i�ap�j��s

y�j�s�i� � H:c:

� �ah�i�ap�j� � ap�i�ah�j��s
y�i�sy�j� � H:c:g; (6)

where the first two terms describe the hopping processes of
holons and doublons and the second two terms describe
their recombination and regeneration processes.
Correspondingly, the current operator Jcur is given by
 

Jcur � it
X
ij

f�ayh �i�ah�j� � a
y
p�j�ap�i��s

y�i�s�j� � H:c:g

� it
X
ij

f�ah�i�ap�j� � ah�j�ap�i��sy�j�sy�i� � H:c:g;

(7)

where the first two terms are the drift currents and the last
two terms are recombination and regeneration current.

In order to study the Josephson coupling explicitly in the
diode, we take the following general mean-field trial wave
function,

 � �
Y
i

fcos�1�i�s
y�i� � ei�2�i� sin�1�i�


 �ei�1�i� cos�2�i�a
y
h �i� � e

�i�1�i� sin�2�i�a
y
p�i��g;

(8)

which gives the superconducting order parameter as
 

hby�i�i�
sin2�1�i�

2
ei�1�i��ei�2�i� cos�2�i��e�i�2�i� sin�2�i��:

(9)

There are two independent phase variables �1;2 in the
above formulas. �1�i� is the conventional phase of super-
conducting order parameter, which is the conjugate vari-
able to the density, namely, �n�i�; �1�i�� � i. The other
variable, �2�i� is associated with the quantity aypap �
ayhah � 1� sys, namely, the density of singlons ns�i� �
sys. Thus, we have �ns�i�; �2�i�� � i. In the conventional

Josephson junction, �2�i� can be simply fixed to be zero
since the number of singlons can arbitrarily fluctuate.
However, the presence of the depletion insulating region
changes the above picture. Not only does the depletion
region serve as a tunneling barrier, but also its fluctuation
leads to additional physics, which is the fluctuation of the
number of singlons. Assuming the variables of the wave-
functions in the superconducting states in the left and right
sides of the junctions are given by (�1l;r, �2l;r, �1l;r, �2l;r),
we rewrite Eq. (6) as

 Ht � J1 cos���1 ���2� � J2 cos���1 � ��2�

� J3 cos���1 � ’� � J4 cos���1 � ’�; (10)

 

��i � ��ir � ��il�i � 1; 2�; ’ � �2l ��2r;

J1 � sin2�1l sin2�1r cos�2l cos�2r=4;

J2 � sin2�1l sin2�1r sin�2l sin�2r=4;

J3 � sin2�1l sin2�1r cos�2l sin�2r=4;

J4 � sin2�1l sin2�1r sin�2l cos�2r=4: (11)

Similarly to the Josephson coupling in multiband super-
conductors [7–9], Eq. (10) indicates hidden internal dy-
namics in the junction. There are two observations. The
first is that the coupling depends not only on ��2, but also
on ’, the sum of the phases �2l and �2r, reflecting the
recombination and regeneration processes. As shown in
Fig. 1, holons and doublons are the majority carriers in the
left and right sides, respectively, thus cos�2l � sin�2l and
sin�2r � cos�2r hold. As a result, the J3 term describing
the recombination and regeneration processes dominates
over other terms. The second is that if �2 is set to 0, we
recover the conventional form of the Josephson coupling
energy, i.e., H � J cos���1�. Without the insulating re-
gion, the number of singlons is not determined in both
sides. Therefore, ’ and ��2 do not have any dynamics and
can be chosen to 0. However, their dynamics can be created
in the presence of the depletion insulating region.

We discuss the fluctuation of the Mott-insulating deple-
tion region. When the system is slightly out of equilibrium,
the depletion region has to shrink or expand symmetrically
respect to the center of the junction in order to maintain the
charge neutrality. This corresponds to the recombination
and regeneration processes in the depletion region, which
changes the value of nRs � nLs , and thus creates the dynam-
ics of ’. The frequency of this mode can be estimated as
follows. The mismatch of chemical potentials in the two
sides of the junctions depends on the length of the deple-
tion region as ��mis � ��� �V � ���D2q�=�. The
restoration force on the charge carriers can be approxi-
mated as F � ���mis=�2D� � ��x��=D2, where �x is
the small displacement of the boundaries of the depletion
region. This mode is essential the plasmon mode with the
frequency determined as !2

b � q�=�m���, where m� 	
1=�t�� is the effective mass of the charge carrier. Thus
!b scales linearly with the doping level �.
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In general, the fluctuations of the phase ’ is a diffusion
process. Let � be the decay rate set by the diffusion, which
depends on disorder and detailed low energy excitations in
the insulating and superconducting regions. The fluctua-
tions of ’ lead to the following correlation function,

 hei’�t�e�i’�0�i � ei!bt��jtj: (12)

Therefore, the total current correlation function is

 hJ�t�J�0�i / cos�!bt�e��jtj; (13)

which gives the noise spectrum of current as

 S�!� �
Z
dtei!thfJ�t� � hJ�t�i; J�0� � hJ�0�igi

/
�

�!�!b�
2 � �2 �

�

�!�!b�
2 � �2

2

: (14)

Now we briefly discuss the case for neutral bosonic
system, say, the p-n junction made by cold bosonic atoms.
The Bose-Hubbard model [10] has already been realized in
optical lattices experimentally. In such systems, it requires
an external potential drop to create a depletion region in an
inhomogeneous optical lattice. In this neutral system, there
is an additional mode, a sliding mode, associated to the
collective excitations of depletion region. For the sliding
mode, we can imagine that the system is slightly out of
equilibrium by sliding the whole depletion region. Since
this mode changes the value (nRs � nLs ), it naturally creates
the dynamics of ��2. In the two band picture, this mode is
corresponding to transferring a hole (or doubleon) in the
one side to the other side. Since the difference of band
energy is given by the Mott gap, �� which is proportional
to U, the mode is expected to have the frequency !a �
��. This mode has the same response in the noise spec-
trum of the junction as the plasma mode expect their
energy difference. A design of the ‘‘atomtronic diode’’
exhibiting asymmetric response to external chemical po-
tential difference was discussed by Seaman et al. [11]. The
major difference to our design is that no insulating deple-
tion region exists in their design.

Experimentally, the Bose-Hubbard mode for charged
bosons can be realized in Josephson arrays [6]. By choos-
ing the chemical potential configuration discussed above,
the Josephson diode should be formed. High Tc cuprates
are another class of possible systems to realize the
Josephson diode. Two different insulating phases exist in
cuprates. One is in undoped systems and the other is at the
1=8 doping level [12,13], both of which can be used to
create the Josephson diode in principle. A universal asym-
metric density between positive and negative bias voltage
in STM experiments [14–16] has been observed, which
can been explained by considering an insulating competing
order at surface [17–20]. This is an important support for
the possible realization of the proposed junction, although
other alternative explanations [21,22] also exist. The key
to create the Josephson diode junction is a spatially selec-
tive doping control in cuprates. An in-plane SAS junction

has been created by using the spatially selective and re-
versible doping control techniques in cuprate films [23].
Photodoping techniques can also locally control the doping
level [24–26]. These techniques can be used to create two
close-by regions with different doping levels with an in-
sulating phase between them. Although it is clear that the
Josephson diode in cuprates cannot be described by the
simple Bose-Hubbard model, we believe that the physics
presented here is still valid. The effective bosonic
Hamiltonian in cuprates has to include the spin degree of
freedom [3,5,27]. Since we are interested in the charge
transport in the Josephson diode, the spin degree of free-
dom does not have adirect effect on the properties we
studied in this Letter. However, it is largely an open ques-
tion whether any other new properties can be induced by
the spin degree of freedom.
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