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Using a reformulated Kubo formula we calculate the zero-energy minimal conductivity of bilayer
graphene taking into account the small but finite trigonal warping. We find that the conductivity is
independent of the strength of the trigonal warping and it is 3 times as large as that without trigonal
warping and 6 times larger than that in single layer graphene. Although the trigonal warping of the
dispersion relation around the valleys in the Brillouin zone is effective only for low-energy excitations, our
result shows that its role cannot be neglected in the zero-energy minimal conductivity.

DOI: 10.1103/PhysRevLett.99.066802 PACS numbers: 81.05.Uw, 72.10.Bg, 73.23.Ad, 73.43.Cd

Recent experiments have proved that the charge carriers
in graphene (single or stacks of atomic layer of graphite)
are massless Dirac fermions [1–3]. For recent reviews on
graphene, see Refs. [4–6]. Besides the unusual transport
properties observed and reviewed in the above works,
another important experimental feature is the minimal
conductivity of the graphene systems which was consid-
ered theoretically [7] long before the experimental evi-
dence. After the above-mentioned experimental works on
graphene, a number of theoretical studies [8–18] have
predicted the conductivity of the order of e2=h. Very
recently, Miao et al. have experimentally confirmed [19]
most theoretical predictions [11,13–18], namely, the mini-
mum conductivity in wide and short strips approaches
the universal value �min

xx � �4=��e2=h in single layer
graphene.

The bilayer graphene was studied first experimentally
[3] by Novoselov et al. and theoretically [20] by McCann
and Fal’ko. McCann has calculated the asymmetry gap in
the electronic band structure of bilayer graphene [21]. In
biased bilayer graphene it was demonstrated that the gap
can be tuned by electric field effect [22]. In bilayer gra-
phene the semiconductor gap has recently been controlled
experimentally by Ohta et al. [23]. The optical and
magneto-optical far infrared properties of bilayer graphene
has been studied by Abergel and Fal’ko [24]. The role of
the impurities in biased bilayer graphene has been studied
by Nilsson and Castro Neto [25]. The realization of quan-
tum dots in bilayer graphene has theoretically been dem-
onstrated recently by Pereiera et al. [26]. Ludwig has
considered the conductance of a normal-superconductor
junction in bilayer graphene [27]. Recently, Koshino and
Ando have investigated the transport in bilayer graphene in
self-consistent Born approximation [28] and they found
that in the strong-disorder regime �min

xx � �8=��e
2=h,

while in the weak-disorder regime �min
xx � �24=��e2=h,

which is 6 times larger than in single layer graphene.
Similarly, Katsnelson has also calculated the minimal con-
ductivity in bilayers using the Landauer approach [29] and
he obtained a different value �min

xx � 2e2=h. In Ref. [17]

we found �min
xx � �8=��e2=h which was confirmed later by

Snyman and Beenakker [30] using the Landauer approach.
However, much fewer theoretical works paid attention to

the role of the trigonal warping in bilayer graphene. The
influence of the trigonal warping on the weak localization
effect has been investigated by Kechedzhi et al. [31], while
on the minimal conductivity only by Koshino and Ando
[28] using an effective 2� 2 Hamiltonian. Our aim in this
work is to calculate the minimal conductivity using the
Hamiltonian suggested originally by McCann and Fal’ko
[20]. This Hamiltonian allows us to find the zero-energy
minimal conductivity as a function of the strength of the
trigonal warping in bilayer graphene. We use the Kubo
formula rewritten in a form suitable for obtaining the zero-
energy minimal conductivity in graphene systems.
Surprisingly, we find that the conductivity is independent
of the strength of the trigonal warping and six times as
large as that for single layer graphene.

The bilayer graphene consists of two coupled honey-
comb lattices with basis atoms A1; B1 and A2; B2 in the
bottom and the top layers, respectively. The two layers are
arranged in Bernal stacking (A2 � B1). The intralayer cou-
pling between A1 and B1 and A2 and B2 is �0. The strongest
interlayer coupling is between A2 and B1 with coupling
constant �1. A direct hopping between A1 and B2 is taken
into account by the coupling constant �3 � �1. This cou-
pling is responsible for the trigonal warping. The above
coupling constants are estimated as �0 � 3:16 eV [32],
�1 � 0:39 eV [33], and �3 � 0:315 eV [34].

To model the bilayer graphene we use the same gapless
Hamiltonian as that in Refs. [20,35] which takes into
account the trigonal warping. The Hamiltonian in the basis
A1; B1; A2; B2 in the valley K and in the basis B1; A1; B2; A2

in the valley K0 reads

 Hb1 � �

0 vp� 0 v3p�
vp� 0 ��1 0

0 ��1 0 vp�
v3p� 0 vp� 0

0
BBB@

1
CCCA; (1)
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where p� � px � ipy, v �
���
3
p
a�0=�2@�, and v3 �

���
3
p
a�3=�2@�, while � � �1 for the valley K and � � �1 for the

valley K0 (a � 0:246 nm is the lattice constant in the honeycomb lattice). The strength of the trigonal warping is described
by the parameter � � v3=v � �3=�0. According to previous studies [20,32,34] � 	 0:1.

The four eigenvalues of (1) as functions of the wave number k � k�cos’; sin’� are given by

 E2
n�k;’� �

�2
1

2

1� ~k2��2 � 2� � ��1�n��; where � �

����������������������������������������������������������������������������������������������������
1� 2~k2��2 � 2� � ~k4�2��2 � 4� � 8~k3� cos3’

q
; (2)

where n � 1; 2, while the rescaled wave number is ~k �
k@v=�1.

Owing to the cos3’ term the eigenvalues are threefold
rotational invariant for finite �. The eigenvalues �E1

become zero at the K point of the Brillouin zone, i.e., at
~k � 0, and at the center of the three pockets located at ~k �
� and’ � 0; 2�=3; 4�=3. Around these zeros the constant
energy lines are distorted as shown in Fig. 1. This is called
trigonal warping. At moderate energy, direct hopping be-
tween A1 and B2 leads to trigonal warping of the constant
energy lines about each valley, but at an energy E less than
the Lifshitz energy EL � �1�

2=�4� �2� 	 1 meV, the
effect of trigonal warping is dramatic. It leads to a
Lifshitz transition [36]: the constant energy line is broken
into four pockets, which can be referred to as one central
and three leg parts. For v3 � v, i.e., �� 1, we find that
the separation of the 2D Fermi line into four pockets would
take place for very small carrier densities n < nL � 1�
1011 cm�2 (here nL is the Lifshitz density). For n < nL, the
central part of the Fermi surface at energy E is approxi-

mately circular with area Ac 	 �E2=�@v3�
2, and each leg

part is elliptical with area A‘ 	
1
3Ac. For E� EL the

dispersion relation is linear in k. The constant energy lines
are similar around the K0 point. For � � 0 there is no
trigonal warping; i.e., the eigenvalues are rotational sym-
metric and the Dirac cones are only at the K and K0 points.

Recently, in self-consistent Born approximation
Koshino and Ando [28] have investigated the minimal
conductivity for bilayer graphene using an approximated
2� 2 Hamiltonian which mimics the trigonal warping and
is given by

 Hb2 � g2
0 ~p2

� � ~p�
~p2
� � ~p� 0

� �
; (3)

where the effective coupling constant is g2 � �1�2
3=�

2
0,

and the rescaled momentums are ~p� � �px � ipy�=p0 and
p0 � 2@�1�3=�

���
3
p
a�2

0�.
The simplest effective Hamiltonian valid for E� �1

and first introduced by McCann and Fal’ko [20] to study
the Hall conductivity of bilayer graphene is given by

 Hb3 � �g3
0 p2

�

p2
� 0

� �
; (4)

where g3 � v2=�1 is the effective coupling constant. In
this case the trigonal warping is absent. In this work, we
calculate the minimal conductivity for all three Hamil-
tonians, Hb1, Hb2, and Hb3.

To find the minimal conductivity for graphene systems
we start from the Kubo formula used by Ryu et al. in
Ref. [18] which at zero temperature and for dc conductivity
(at zero frequency !) is given by

 �min
�� � nsnv lim

�!0
������; (5a)

where

 ������ � �	��
@

4�

Z d2r
S

Z
d2r0����r; r0;E � 0; ��;

(5b)

 ����r; r0;E;�� � Tr
GAR�r; r0;E;��j�GAR�r; r0;E;��j��:

(5c)

Here ��; �� � x; y, the spin degeneracy is ns � 2, the
valley degeneracy corresponding to the valley K and K0

is nv � 2, the area of the sample is S, while

 GAR�r; r0;E;�� � G��r; r0;E;�� �G��r; r0;E;�� (5d)
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FIG. 1. Constant energy lines (in units of �1) of the dispersion
relation of the positive eigenvalue E1 in the (~kx; ~ky) plane around
the K point of the Brillouin zone (at the origin in this figure).
Here � � 0:1 and the contour lines are plotted equidistantly with
the most outer contour line corresponding to energy 2EL.
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is the difference between the advanced (A) and the retarded
(R) Green’s functions. The trace is taken over the spinor
indices and for systems with translation invariance, the
single-particle Green’s functions are given by

 G��r1; r2;E;�� �
Z d2k
�2��2

eik�r2�r1�G��k;E;��; (5e)

 G��k;E;�� � 
E� i��H�k���1; (5f)

 H�k� � H�p � @k�; (5g)

and the current operator is

 j� � i
e
@

H; r�� �

e
@

@H�k�
@k�

: (5h)

The above expression (5b) for the conductivity can be
simplified using the identity

 ��z�H��1 � �z�H��1 � �2z�z2 �H2��1:

Then with z � i� and for translational invariant systems
������ in Eq. (5b) has a form

 ������ � 	��
2e2

h
�2I���; (6a)

where
 

I��� �
Z d2k
�2��2

Tr
�

�2 �H2�k���1 @H�k�

@k�

� 
�2 �H2�k���1 @H�k�
@k�

�
: (6b)

Before we turn to the case of the bilayer it is instructive
to see how the expression (6b) works for single layer
graphene. In this case the Hamiltonian is given byHs�k� �
gs�
xkx � 
yky�, where gs � @v, and 
x and 
y are the
Pauli matrices acting on the isospin space. The integrand in
Eq. (6b) can easily be calculated using polar coordinates
for k, and one finds I��� 
 Is��� � 1=�2��2�, which is
independent of the coupling constant gs. Note that the main
contribution in the integral I��� comes from the vicinity of
k � 0; therefore, the integral over k can be extended to
infinity [15]. Then from Eqs. (6a) and (5a) we obtain the
well-known universal value of the minimal conductivity
for single layer graphene: �min

xx � �4=���e2=h� [11,13–
18].

We now consider the bilayer graphene taking into ac-
count the effect of the trigonal warping. For bilayer with
Hamiltonian (1) the current operator jx is

 jx � �
ev
@

0 1 0 �
1 0 0 0
0 0 0 1
� 0 1 0

0
BBB@

1
CCCA: (7)

Similarly, jy can easily be calculated. The integral I��� 

Ib1��;�� in Eq. (6b) will depend on�. It can be shown that

�xx � �yy and �xy � �yx � 0. Using polar coordinates
for k, and rescaling the variables k and � as k! k@v=�1

and �! �=�1, a straightforward algebra yields for the
case of � � �1 (valley K)
 

Ib1��;�� �
Z 1

0

Z 2�

0
k
A� B cos3’

�C�D cos3’�2
d’
2�

dk
2�

; (8a)

A � k4�2� 5�2� � �1� �2�
4k2�1� �2� � 2�2

� �2�1� �2��; (8b)

B � 4k3�; D � �2k3�; (8c)

C � k4 � �4 � �2 � k2
2�2 � �2�1� �2��: (8d)

The integrand has a threefold rotational symmetry as
should be for trigonally warped bilayer graphene. It can
be shown that for � � �1 (valley K0) we have the same
results. The conductivity is twofold degenerate according
to the valleys, i.e., nv � 2. The integral over ’ can be
performed analytically and Ib1��;�� becomes

 Ib1��;�� � 2
Z 1

0
k
AC� BD

�C2 �D2�3=2

dk
2�

: (9)

Without trigonal warping, i.e., for � � 0, one finds
 

Ib1��� 0; �� �
Z 1

0

dk
2�

4k�k4��4��2� 2k2� 2k2�2�

�k4��4��2� 2k2�2�2

�
1

��2 : (10)

Thus, using Eqs. (6a) and (5a) the minimal conductivity for
bilayer graphene without trigonal warping is �min

xx �� �
0� � �8=���e2=h�. This result has been derived first in
Ref. [17] in a different way, and subsequently by Snyman
and Beenakker in Ref. [30] using the Landauer approach.

After a tedious calculation the integral in Eq. (9) for
finite value of � can be performed yielding

 Ib1��;�� �
1

4��2

�
12�

127� 145�2 � 38�4

�6 � �4
�2

�
;

(11)

plus terms of the order of O�ln�� and O��2�. Again, using
Eqs. (6a) and (5a) we find a remarkable result; namely, the
minimal conductivity for bilayer graphene with trigonal
warping takes a universal value �min

xx ��� � �24=���e2=h�
independent of the strength � of the warping. This is our
central result in this Letter. This value is 6 times as large as
the conductivity in single layer graphene. It is surprising
that �min

xx ��� is not a continuous function around � � 0.
Indeed, as we have seen �min

xx �� � 0� � �8=���e2=h�,
while for any finite values of � it is 3 times larger. This
nonanalytic behavior of�min

xx ��� at� � 0 is a consequence
of the fact that the minimal conductivity results from the
electronic dynamics in the limit of zero density n! 0. For
any nonzero �, such density is always below the Lifshitz
density n < nL where the 2D Fermi line around each valley
forms four separate pockets, whereas for � � 0, the
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Lifshitz transition does not occur and there is always a
single Fermi line at each valley.

In the framework of self-consistent Born approximation,
the same result was predicted by Koshino and Ando [28]
using the Hamiltonian Hb2 given by Eq. (3). Note that in
this Hamiltonian there is no adjustable parameter for the
strength of the trigonal warping like � for Hamiltonian (1).
The effective coupling constant g2 drops out in Eq. (6b);
therefore, in this model the trigonal warping is built in
without the possibility to change its strength. Using Eq. (6)
we repeat the calculation with the Hamiltonian (3) and find

 I��� 
 Ib2��� �
1

4��2 �12� 127�2�; (12)

plus terms of the order of O�ln�� and O��2�. Thus, the
minimal conductivity takes the same universal value
�min
xx ��� � �24=���e2=h� as that for Hb1 in Eq. (1).
Finally, we calculate the minimal conductivity using the

simplest Hamiltonian Hb3 given by Eq. (4). Then the
integral in (6b) can exactly be calculated: I��� 
 Ib3��� �
1=���2�. Thus, the minimal conductivity takes the same
universal value �min

xx � �8=���e
2=h� as that for

Hamiltonian (1) with � � 0.
In summary, we compared the minimal conductivity in

bilayer graphene obtained from three different effective
Hamiltonians used in the literature. We found that for the
case when the trigonal warping is absent, the conductivity
is always 2 times larger, while in the presence of trigonal
warping it is 6 times larger than that for single layer
graphene and is independent of the strength of the warping.
Our universal results suggest that the conductivity has a
topological origin, which can be a further research topic in
the future.
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