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We study electronic transport properties of ferromagnetic nanoparticle arrays and nanodomain
materials near the Curie temperature in the limit of weak coupling between the grains. We calculate
the conductivity in the Ohmic and non-Ohmic regimes and estimate the magnetoresistance jump in the
resistivity at the transition temperature. The results are applicable for many emerging materials, including
artificially self-assembled nanoparticle arrays and a certain class of manganites, where localization effects
within the clusters can be neglected.
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Arrays of ferromagnetic nanoparticles are becoming one
of the mainstreams of current mesoscopic physics [1– 4].
Not only do ferromagnetic granules promise to serve as
logical units and memory storage elements meeting ele-
vated needs of emerging technologies, but they also offer
an exemplary model system for investigation of disordered
magnets. At the same time, the model of weakly coupled
nanoscale ferromagnetic grains proved to be useful for
understanding the transport properties of doped manganite
systems [5,6] that have intrinsic inhomogeneities. Recent
studies showed that above the Curie temperature these
materials possess a nanoscale ferromagnetic cluster struc-
ture which to a large extent controls transport properties of
these systems [7–10]. This defines an urgent quest for an
understanding and quantitative description of electronic
transport in ferromagnetic nanodomain materials based
on the model of nanogranular ferromagnets.

In this Letter, we investigate electronic transport prop-
erties of arrays of ferromagnetic grains [11] near the
ferromagnetic-paramagnetic transition, see Fig. 1.

At low temperatures, T < Tsc, the sample is in a so-called
superferromagnetic (SFM) state, see Fig. 1, set up by
dipole-dipole interactions. Near the macroscopic Curie
temperature, Tsc, thermal fluctuations destroy the macro-
scopic ferromagnetic order. At intermediate temperatures
Tsc < T < Tgc , where Tgc is the Curie temperature of a single
grain, the system is in a superparamagnetic (SPM) state
where each grain has its own magnetic moment while the
global ferromagnetic order is absent. At even higher tem-
peratures, T > Tgc , the ferromagnetic state within each
grain is destroyed and the complete sample is in a para-
magnetic state. We consider the model of weakly interact-
ing grains with Tsc � Tgc .

We first focus on the SPM state, and discuss a
d-dimensional array (d � 3, 2) of ferromagnetic grains
taking into account Coulomb interactions between elec-
trons. Granularity introduces additional energy parameters
apart from the two Curie temperatures, Tgc and Tsc: each
nanoscale cluster is characterized by (i) the charging en-
ergy Ec � e2=��a�, where e is the electron charge, � the

sample dielectric constant, and a the granule size, and
(ii) the mean energy level spacing �. The charging energy
associated with nanoscale ferromagnetic grains can be as
large as several hundred Kelvins [11] and we require that
Ec=�� 1. The typical sample Curie temperature, Tsc, of
the arrays we consider (and also of doped manganites) is in
the range �100–200� K [3,12,13]; thus the temperature

FIG. 1 (color online). Top: sketch of a 3d granular system
under consideration showing the different states at different
temperatures: for T < Tsc, where Tsc is the macroscopic Curie
temperature of the system, the ferromagnetic grains (superspins)
form a superferromagnet (SFM); for Tsc < T < Tgc , where Tgc is
the Curie temperature for a single grain, the system is in a
superparamagnetic (SPM) state; and above Tgc the system shows
no magnetic order. In the SPM state the angle between two
grains (superspins) is denoted by �. Note that this is an idealized
picture, see [11]. Bottom: schematic behavior of the resistivity,
�, vs temperature, T, in the different states in the absence (B �
0) and presence (B> 0) of a magnetic field B aligned with the
magnetization of the SFM; cf. [3,12].
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interval Tsc < T < Ec is experimentally accessible. To sat-
isfy the last inequality, the size of a single ferromagnetic
grain, a, should be less than the critical size ac �
e2=�Tsc��. The condition Ec=�� 1 defines the lower limit
for the grain size: al � ��=e2��1=�D�1�, where � � �" � �#
is the total density of states at the Fermi surface (DOS)
with �"�#� being the DOS for electrons with spin up (down)
and D the grain dimensionality [14].

The internal conductance of a metallic grain is taken
much larger than the intergrain tunneling conductance,
which is a standard condition of granularity. The tunneling
conductance is the main parameter that controls macro-
scopic transport properties of the sample [15]. In consid-
eration of applications to Refs. [1,3,13,16] we restrict
ourselves to the case where the tunneling conductance is
smaller than the quantum conductance [17]. In the SPM
state the charge degrees are coupled with the spin degrees
of freedom; to reflect this connection, the tunneling con-
ductance can be written as ~gt��� � g0

t �1��2 cos�� [18],
where g0

t is the tunneling conductance in the paramagnetic
state [19]; � � ��" � �#�=��" � �#� is the polarization fac-
tor of a ferromagnetic grain where � 2 �0; �	 is the angle
between two superspins, see Fig. 1. The tunneling con-
ductance achieves its maximum value for parallel spins,
� � 0 (SFM state). In general, the distribution of angles �
is determined by some function f��� which depends on
temperature (and on external magnetic field): for T < Tsc,
in the SFM state f��� is the � distribution and for high
temperatures, T � Tsc, it is constant [an explicit expression
for f��� is discussed below Eq. (3)]. We denote averages
over angles by h. . .i� 


R
�
0 d� . . . f��� with h1i� � 1.

Using this distribution we introduce the averaged tunneling
conductance:

 gt�m2� 
 h~gt���i� � g0
t �1��2m2�; (1)

with the normalized ’’magnetization’’ m2 � hcos�i�, e.g.,
m2 � 1 in the SFM state and m2 ! 0 for temperatures,
T � Tsc. Note that in general m2 is not the normalized
(absolute value of the) magnetization of the sample since it
only takes into account the angle between two neighboring
superspins in the plane spanned by them (Fig. 1). However,
close to Tsc, we can expect m2 � jM�T�=Msj

2, where Ms is
the saturation value of the magnetization of the sample.
Below we first discuss the Ohmic transport near Tsc and
then summarize our results for the resistivity behavior in
the non-Ohmic regime.

Ohmic transport.—To calculate the conductivity for
weakly coupled grains in the presence of quenched disor-
der, we start with determining the total probability for an
electron to tunnel through N grains ~P��1; . . . ; �N� �QN
i�1

~Pi��i�, where ~Pi��i� denotes the probability for an
electron to tunnel through a single grain i with an angle
difference �i of the magnetic moment to the previous grain
[15,20]. The probability ~P��1; . . . ; �N� has to be averaged
over all angles in order to obtain the total tunneling proba-
bility P total 
 h ~P��1; . . . ; �N�i�1;...;�N �

QN
i�1 P i�m2�. The

latter equality follows from the fact that P total factorizes
into the individually averaged probabilities P i�m

2� �

h ~Pi��i�i�i [20]. The mechanism for electron propagation
through an array of grains at low temperatures is elastic
and/or inelastic cotunneling. The corresponding probabil-
ities in the limit of weak coupling between the grains [17]
are given by P el

i �m
2� ’ �gt�m2��	=Ec and P in

i �m
2� ’

�gt�m2�T2	=E2
c, respectively [21]. Assuming that all prob-

abilities P i�m2� are approximately the same [11] for each
grain, P i�m

2� � P �m2� for all i, and expressing them in
terms of the localization length ��m2�, defined by P �m2� �
exp��a=��m2�	, we obtain [15]

 �el ’ a= ln�Ec=gt�m2��	; �in ’ a= ln�E2
c=T2gt�m2�	:

(2)

Since the characteristic temperature we consider is of the
order of Tsc, the dominant mechanism for electron propa-
gation is the inelastic cotunneling [22]. Following Mott-
Efros-Shklovskii’s theory [23,24], the conductivity can be
written as ��T;m2� � gt�m

2� exp��r=��m2� � e2=��rT�	,
where the tunneling conductance gt�m2� is given by Eq. (1)
and r is the hopping distance. The first term in the exponent
accounts for electron tunneling and the second describes
thermal activation necessary to overcome the Coulomb
correlation energy. Optimizing the conductivity with re-
spect to the hopping length, r � Na, we obtain:

 ��T;m2� � g0
t �1��2m2� exp��

����������������������
T 0�m2�=T

q
�; (3)

with T 0�m2� � T0�1� ��0=a� ln�1��2m2�	. Here T0 

T 0�m2 � 0� � e2=���0�, where �0 is the inelastic local-
ization length given in Eq. (2) with the tunneling conduc-
tance corresponding to the paramagnetic state,
gt�m

2 � 0� � g0
t . The minimal value of the resistivity in

the SFM state is determined by the minimal value of the
energy scale T min

0 � T0�1� ln2�.
The behavior of the resistivity ��T;m2�, inverse of the

conductivity ��T;m2� in Eq. (3), and the magnetization
m2�T� are shown in Fig. 2 for the following set of parame-
ters: �0=a � 1, T0=T

s
c � 10, and �2 � 0:3. In order to

describe experimental data [12], the normalized distribu-
tion function f��� was chosen to ensure a sharp drop in
the magnetization at Tsc, f�	; x	 � �	= arctan�1=	�	�x2 �
	2��1, with x � �=� and 	�T� � 10�T=Tsc � 1� for T 

Tsc and 	�T < Tsc� � 0 otherwise. The numerical constant
in 	�T� was taken to produce a drop ofm2 in a temperature
region �Tsc with �Tsc=T

s
c � 0:1. Note that the jump in the

resistivity does not depend on the precise functional ex-
pression of f���, but it is sufficient that m2 decays rapidly
in the interval �Tsc � Tsc.

For small polarization factors, �2m2 � 1, the expres-
sion for the energy scale T 0�m2� can be written as
T 0�m2� � T0�1� ��0=a��2m2	. As a result, we obtain
for the conductivity of an array of superspins ��T;m2� �

�1� 
T�2m2	 exp��
�����������
T0=T

p
�, where 
T is a temperature

dependent function. For temperatures Tsc � T � T0 it is

PRL 99, 066602 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
10 AUGUST 2007

066602-2



given by 
T ’ ��0=2a�
�����������
T0=T

p
. The last expression can be

written in terms of the optimal hopping length, ropt �

�0

�����������
T0=T

p
, as 
T ’ ropt=2a. Since the hopping length de-

pends on temperature even within the SPM state, where the
temperature T satisfies the inequality Tsc < T < Ec, one
expects to observe two different regimes: at temperatures
Tsc < T < T� the dominant mechanism for electron propa-
gation is variable range hopping (in this regime ropt > a),
while for T� < T < Ec electrons hop between the nearest
neighbor grains only (ropt � a). The separating tempera-
ture T� can be estimated using the condition ropt ’ awhich
gives T� ’ T0��0=a�

2, i.e., T� � T0.
To calculate the magnitude of the jump value of the

resistivity at the transition from the SPM to the SFM state
in Fig. 2, we introduce the dimensionless resistance ratio
��=� 
 ��SPM � �SFM	=�SPM, where �SFM is calculated
at temperature T � Tsc, using the inverse of Eq. (3), for
magnetization m2 � 1; �SPM has to be evaluated at some
temperature T1 > Tsc at which ��T;m2� is maximal and
magnetization m2

1 
 m2�T1�. The temperature T1 is of the
order of Tsc � �Tsc, but since the magnetization drops
quickly above Tsc, i.e., �Tsc � Tsc, it is sufficient to take
�SPM at T1 � Tsc for calculating the jump. Using Eq. (3) we
obtain the following result:

 

��
�
’ 1�

1��2m2
1

1��2 e�
�����������������
T 0�m2

1�=T
s
c

p
�

���������������
T 0�1�=Tsc
p

: (4)

For small polarization factors, �2 � 1, this reduces to
��=� ’ ��0=2a�

�������������
T0=T

s
c

p
�2�1�m2

1� and can be expressed
in terms of ropt as ��=���2ropt�T

s
c�=a. Therefore, the

larger the hopping length, the bigger the resistivity jump is
between the SPM and SFM states. From Eq. (4) follows

that the resistance ratio ��=� increases for small Curie
temperatures, Tsc � T0. We now estimate the jump mag-
nitude in Eq. (4): using the realistic values: �2 � 0:3,
m2

1 � 0:1, �0=a � 1, T0=T
s
c � 10, we obtain ��=� ’

0:4, corresponding to a jump 
 � 60%, where 
 is defined
by �SPM � �1� 
��SFM. This estimate agrees with the
plot in Fig. 2.

Non-Ohmic regime.—So far we discussed the Ohmic
regime in the absence of an external electric field. In the
presence of an electric field E, the hopping conductivity in
the paramagnetic state is �� exp��r=�� e2=��rT� �
eEr=T	 [25], with the inelastic cotunneling localization
length �in � a= ln�E2

c=g
0
t �T

2 � �eEa	2�	 [15,21]. For suf-
ficiently high electric fields E> T=e� the tunneling term,
exp��r=��, in the expression for conductivity is not
relevant. As a result, the optimal hopping distance

ropt�E� � �
������������
E�=E

q
, with the characteristic field E� �

e=���2�, and the resistivity �� exp�ropt�E�=�	 are tem-
perature independent.

Including the magnetization dependent tunneling con-
ductance gt�m2� in the above consideration, one finds that
the conductivity in the SPM state in the presence of a
strong electric field ��E;m2� is given by Eq. (3) with
T 0�m

2� ! E0�m
2� and T ! E, where E0�m

2� �
E0�1� �2�0=a� ln�1��2m2�	 is the characteristic elec-
tric field, E0 � T0=e�0, and �0 � a= ln�E2

c=��eaE	2g0
t �	.

Equation (3) with the above substitutions holds for electric
fields T=�e��m2�	<E< E0�m

2�. The last inequality
means that the optimal hopping length ropt�E� is larger
than the size of a single grain, a, while the first inequality
ensures that the electric field E is still strong enough to
cause non-Ohmic behavior. Using typical values [2] for
a � 10 nm, T0 � 103 K, � � 3, and temperature T �
102 K we estimate the window for electric fields as
103 V=cm <E< 105 V=cm. The resistance ratio ��=�
in the presence of a strong electric field is still given by
Eq. (4) with the substitution T 0�m2

1� ! E0�m2
1�. For small

polarizations, �2 � 1, one obtains ��=� ’ ��0=a�����������������������������
E0=�T

s
c=e�0�

p
�2�1�m2

1�.
Discussion.—Past experimental studies of self-

assembled ferromagnetic arrays were dealing either with
their thermodynamic properties [1– 4] or with domain wall
motion [26]. Investigations of the electronic transport and
magnetoresistance (MR) were mostly restricted to the SPM
state [27,28], where variable range hopping (VRH) was
observed. The crossover region near Tsc was only studied
by numerical methods in the context of manganite systems
[5,9,10]. The resistivity dependence below the Curie tem-
perature Tsc presented in Fig. 2 is different from the behav-
ior shown in Fig. 1 reflecting the experimental data on
manganite systems of Ref. [12]. In these materials the
resistance in the SFM state (below Tsc) is close to the
quantum resistance [17] and therefore weakly depends on
temperature. In our consideration we assumed, based on
Refs. [1,3,13,16], that in the SFM state the sample resist-

FIG. 2 (color online). Solid line, right axis: plot of the nor-
malized resistivity ��T;m2�=�SPM, inverse of the conductivity
��T;m2� in Eq. (3), vs temperature for the following set of
parameters: �0=a � 1, T0=T

s
c � 10, and �2 � 0:3. Here

�SPM 
 ��T1; m
2
1� with T1 > Tsc being the temperature at which

��T;m2� is maximal and m2
1 
 m2�T1�. Dashed line, left axis:

plot of the ’’magnetization’’ m2 vs temperature using an angular
distribution function defined in the text.
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ance is much larger than the quantum resistance [17],
meaning that it exhibits VRH behavior and therefore is
more sensitive to temperature than the resistance of man-
ganite systems.

Recently the nanoscale granularity in manganese oxides
was directly observed in La2�2xSr1�2xMn2O7 [29]. The
cluster structure in these perovskite materials is introduced
by dopants, creating the individual weakly coupled nano-
domains. To describe the MR in these materials one has to
take into account electron localization within each cluster.
This means that besides the tunneling conductance, gt, a
finite grain conductance g0 has to be considered as well. In
this case the total conductance can be written as
g�T;m2� � g0�T�gt�m2�=�g0�T� � gt�m2�	. Below the
Curie temperature Tsc, the tunneling conductance is small,
gt�1� � g0�T < Tsc�, such that g�T < Tsc; 1� � gt�1�,
whereas above Tsc, the grain conductance g0�T� is small
due to localization effects (e.g., Jahn-Teller effect [30] ),
leading to the formation of an insulation state, see, e.g.,
[12]. In our Letter we were assuming that g0 � gt; there-
fore, the localization effects within each grain are small.
This situation is realized in, e.g., La1�xAxMnO3 (A � Sr,
Ca) [31].

Above we discussed the limit of zero external magnetic
field. A finite field in ferromagnetic domain materials
affects the SFM-SPM transition and leads to a reduction
of the peak in the MR accompanied by a shift to higher
temperatures with increasing field B, which is parallel to
the magnetization of the SFM at low T [see Fig. 1 (bottom)
or Refs. [3,12]]. In terms of our model this means that the
distribution function f��� favors small angles near Tsc; i.e.,
the drop in m2 is smeared out.

To summarize, we have investigated transport properties
of ferromagnetic nanoparticle arrays and nanodomain ma-
terials in the limit of weak coupling between grains in the
SPM and SFM states in both the Ohmic and non-Ohmic
regime. We have described the electron transport near the
Curie temperature Tsc in the artificially self-assembled
superspin arrays and discussed possible applications of
our results to a certain class of doped manganites, where
localization effects within the clusters can be neglected.
We derived the magnitude of the jump in the resistivity at
the transition between the SPM and SFM states and dis-
cussed the influence of the magnetic field on the jump
amplitude.
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