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A model for field-error penetration is developed that includes nonresonant as well as the usual resonant
field-error effects. The nonresonant components cause a neoclassical toroidal viscous torque that keeps the
plasma rotating at a rate comparable to the ion diamagnetic frequency. The new theory is used to examine
resonant error-field penetration threshold scaling in Ohmic tokamak plasmas. Compared to previous
theoretical results, we find the plasma is less susceptible to error-field penetration and locking, by a factor
that depends on the nonresonant error-field amplitude.
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Efforts to understand the penetration of nonaxisymmet-
ric magnetic field perturbations, ‘‘error fields,’’ into high
temperature plasmas have concentrated on the role of
resonant components. In this work, it is shown that the
often many small nonresonant magnetic field perturbations
can play a crucial role in the error-field penetration prob-
lem by producing a global neoclassical torque that damps
toroidal flow to a diamagnetic ion-type flow. In contrast, a
single resonant perturbation produces a localized electro-
magnetic torque at its respective resonant surface.
Accounting for both these effects leads to a criterion for
the error-field penetration which indicates that the critical
resonant error-field amplitude increases with plasma den-
sity, a result that is in better qualitative agreement with
empirical scaling [1].

Considerable theoretical [2,3] and experimental [1,4–6]
effort has been aimed at understanding the effects of small
resonant helical magnetic field errors, arising from field
coil misalignments and nonaxisymmetric coil feed-
throughs, on plasma confinement in tokamaks. The impe-
tus for this research has come from the experimental
correlation between the emergence of locked modes and
disruptions in tearing-stable low-density Ohmic dis-
charges. Error-field locked modes are induced and develop
as follows [1,5]: (i) the resonant error field is ramped up
linearly or the electron density is ramped down slowly
(> 100 ms), (ii) when the locked-mode threshold is
reached, a rapid (� 5 ms) bifurcation to a nonrotating
‘‘locked state’’ is observed, and then (iii) for �100 ms a
stationary magnetic island, driven by the error field, devel-
ops (usually on the q � 2 surface) and leads to either a
major disruption or confinement degradation. Locked-
mode avoidance in low-density Ohmic discharges is highly
desirable, if not crucial, for reliable tokamak operation.

To date, the theoretical and experimental error-field
studies have been confined to predicting the resonant
(e.g., m=n � 2=1) critical error-field strength (as a func-
tion of plasma density, toroidal field strength, and other
variables) when bifurcation occurs and after which a

locked mode develops. Currently, empirical and theoretical
locked-mode thresholds do not agree on the scaling to
larger devices. Predictive capability for locked-mode
avoidance on ITER [7] is needed. The present benchmark
scenario for ITER relies on an Ohmic start-up with an
anticipated low toroidal rotation rate (� 0:5 kHz).

The standard model [2,3] employed to describe error-
field penetration considers the response of a toroidally
rotating tearing-stable plasma to a single resonant helical
magnetic perturbation. The resonant field component ex-
erts an electromagnetic torque on the plasma only in the
vicinity of its rational surface [2]. This torque is brought
about by the nonlinear interaction of error-field-induced
eddy currents in a singular layer around the rational surface
with the error field itself and is directed against the flow,
trying to brake the plasma. Theoretical predictions of the
eddy current response in the layer depend on the physics
model employed. The standard model assumes a phenome-
nological diffusive perpendicular viscous torque that op-
poses the electromagnetic braking torque, trying to
maintain the plasma flow profile. The steady-state balance
between electromagnetic and viscous torques yields a tran-
scendental equation whose roots give the modified layer
velocity (in the presence of the resonant error field) as a
function of error-field strength. Above a critical error-field
strength the electromagnetic torque on the resonant surface
exceeds the perpendicular viscous torque on the plasma
flow, and the rational surface bifurcates to a stationary, or
locked, state. This bifurcation is termed error-field pene-
tration, and the critical error-field strength at which it
occurs is known as the penetration threshold. After lock-
ing, magnetic reconnection on the resonant surface pro-
ceeds unhindered, as if there were no equilibrium plasma
flow. This scenario closely mimics observations of error-
field penetration occurring during the Ohmic start-up phase
of several tokamaks [1,5,6].

Although resonant components of the magnetic field
perturbation spectrum have dominated the theoretical dis-
cussion, many nonresonant components are also present in
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tokamak experiments. While the nonresonant components
in and of themselves cannot produce locking, these com-
ponents can have a profound effect on the plasma through
their role in damping the toroidal flow by a neoclassical
toroidal viscous (NTV) torque mechanism. NTV is gener-
ated by a radial current resulting from an error-field-
induced nonambipolar drift of trapped particles [8].
Recent experiments on NSTX with large applied nonreso-
nant magnetic perturbations demonstrated qualitative and
quantitative agreement [9] with theoretical predictions [8]
of toroidal flow damping.

We will consider the drag induced by an error field
consisting of one resonant (e.g., m=n � 2=1) and many
nonresonant harmonics. Assuming the error-field-induced
distortion within the toroidal plasma is small enough that
the flux surface remains intact on average, we may employ
the theoretical formulation of Shaing [8]. On each flux
surface, the magnetic field strength is decomposed into
helical harmonics in Hamada coordinates (�; �):

 B � B0

�
1�

X
�n0;m0���0;0�

�bn0m0=B0�e
i�m0��n0��

�
: (1)

Here, the bn0m0 are effectively the ‘‘shielded’’ values inside
the plasma, but we assume the contribution from the few
resonant harmonics to the total NTV force below is small,
and most are just their vacuum values. The toroidal mo-
mentum dissipation arising from NTV is described through
the toroidal component of the ion viscous stress tensor and
leads to a toroidal flow velocity evolution equation of the
form [8]

 @th ~et 	 ~Vi � �h�1=�m� ~et 	 ~r 	�
$

i � 	 	 	 ; (2)

where �m is the mass density, ~et is the covariant base vector

pointing in the toroidal direction, �
$

is the ion viscous
stress tensor, and h	 	 	i denotes a flux surface average.
Evaluating the NTV force in the usually dominant low
collisionality (1=�) regime the NTV force yields [8,9]

 h�1=�m� ~et 	 ~r 	�
$

i � �k�b
1=�
eff �

2�Vt � V
NC

 �; (3)
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1
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�

�
X
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��������n
0bn0m0

B0

��������2
Wn0m0 : (4)

Here R is the major radius, R0 is the major radius of the
magnetic axis, r is the minor radial coordinate, � � r=R0,
�k � !2

ti=�i, !ti � vti=�R0q� is the ion transit frequency,
�i is the ion-ion collision frequency, and the dimensionless
coefficients Wm0n0 are defined in [9]. This regime is valid
provided !E < �i=� <

���
�
p
!ti, where !E is the E� B

drift frequency. Also, for the 1=� regime VNC

 ’

3:5R0q=�ZierB0�dTi=dr [8], where Zie is the charge of
the ion species.

In the large aspect ratio limit, a toroidal plasma may be
approximated by a periodic cylinder, with nearly circular
flux surfaces. Standard cylindrical coordinates (r; �; z) and
simulated toroidal coordinates (r; �; �) with z � R0� will
be employed in this work. In the following, dimensionless
quantities are employed with all length scales normalized
to rs, the resonant-surface minor radius. The major and
minor radii of the plasma are R0 and a (normalized to
rs), respectively. The magnetic field is normalized to
Bl � s�rs�B��rs�, where s�rs� � �d lnq=d lnr�rs represents
the magnetic shear at the resonant surface. Here, q�r� ’
rB0=R0B��r� is the safety-factor profile. All time scales are
normalized to �l � �rs=Vl�, where Vl � Bl=

��������������������
�0�m�rs�

p
,

and �m�rs� is the mass density at the resonant surface.
The equilibrium toroidal momentum balance equation in

the absence of error fields is �1=r��d=dr����r�rdV0
�=dr� �

�F0. Its solution, V0
��r� � V0�

R
a
1 xdx=��x��

�1�R
a
r xdx=��x�, satisfies the boundary conditions V��a� �

0 and V��1� � V0. Here, ��r� is the (phenomenological)
ion perpendicular viscosity [normalized to Vlrs�m�rs�] that
represents cross-field momentum transport due to colli-
sional effects or microturbulence. The equilibrium driving
force F0 � 2V0�

R
a
1 xdx=��x��

�1 supports the flow against
perpendicular viscous damping with the boundary at
r � a.

In the presence of static error fields, two additional
forces enter the toroidal momentum balance equation.
The first—a resonant electromagnetic torque—is strongly
localized around the resonant surface and can be repre-
sented by FEM	�r� 1�=r, where 	�r� 1� is the Dirac
delta function. (The coefficient FEM must be resolved
using boundary layer analysis on the resonant surface
and will be specified in what follows.) The second force
arises from NTV (discussed above) and may be included in
the toroidal momentum balance equation as

 FNC
� � ��k�lb2�r��V��r� � VNC


 �r��: (5)

The effective perturbed magnetic field profile b2�r� �
�b1=�

eff �
2 is given by (4). Thus, the new toroidal momentum

balance equation is given by

 

1

r

d
dr

�
�̂�r�r

dV��r�

dr

�
� b̂2�r��2

s�V��r� � V
NC

 �r��

� �
FE;M
�s

	�r� 1�

r
�
F0

�s
; (6)

where �̂ � ��r�=�s, �s � ��rs�, b̂�r� � b�r�=b�rs�, and

 �s �
������������������
�k�l=�s

q
b�rs�: (7)

The parameter �s determines whether perpendicular
(anomalous or collisional) viscosity dominates over paral-
lel (neoclassical toroidal) viscosity in the bulk plasma. In
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the limit �s 
 1, NTV is negligible and the previous drift-
MHD theory is obtained [3]. In the opposite limit �s � 1,
NTV dominates over perpendicular viscosity, and an en-
tirely new prediction for the error-field penetration thresh-
old is obtained.

The solution of (6) satisfying V��a� � 0, V��1� � V is

 V��r� � �V � ~V0�
G�r; 1�
G�1; 1�

�
2V0

�2
s

�Z a

1

xdx
�̂�x�

�
�1

�
Z a

0
tG�r; t�dt�

Z a

0
VNC

 �t�tb̂

2�t�G�r; t�dt;

(8)

where G�r; t� is the Green function for the operator on the
left of (6). The quantity ~V0, defined by

 

~V 0 �
2V0

�2
s

�Z a

1

xdx
�̂�x�

�
�1 Z a

0
tG�1; t�dt

�
Z a

0
VNC

 �t�tb̂

2�t�G�1; t�dt; (9)

is the toroidal plasma velocity at the resonant surface when
FE;M � 0 and represents the change in the equilibrium
velocity due solely to NTV.

The error-field penetration threshold is obtained by in-
tegrating the toroidal torques across the resonant surface
[2] [i.e.,

RRR
rdrdzd�R0 (6)]. Inspection of (6) reveals that

the neoclassical layer torque (T�;NTV) and perpendicular
viscous torque (T�;VS) satisfy T�;NTV ’ 	G�1; 1�T�;VS,
where 	
 1 is the linear layer thickness. We assume

 G�1; 1�	
 1; (10)

which guarantees NTV may be neglected within the reso-
nant layer. This constraint has two consequences: (i) as in
previous drift-MHD work [3], the resonant layer toroidal
torque balance expression is still between (albeit modified)
perpendicular viscous and electromagnetic torques (i.e.,
T�;VS � T�;EM � 0), and (ii) we can use the previous
drift-MHD analysis [3] to evaluate the plasma response
in the resonant layer.

The layer response function is given by � �
@ ln�br;nm�r��=@rj

1�
1�. For consistency with layer results

in [3], we define the Lundquist number as S � �R=�H,
where �R � �0r2

s=
�rs� and �H � �R0

��������������������
�0�m�rs�

p
�=

�ns�rs�B�� � �l=m. Here 
�rs� is the (dimensional) paral-
lel neoclassical resistivity at the resonant surface. The net
electromagnetic torque acting on the resonant surface is [2]

 T�;EM � 8�2nR0
Imf�g

j ��0s ��j2
jbvac
r;nmj

2; (11)

where bvac
r;nm is the vacuum radial magnetic perturbation

associated with the resonant error-field component (at the
resonant surface). Here �0s is the conventional tearing
stability index of the (stable) m; n mode. In the absence
of any resonant error field, the oscillation frequency of a

spontaneous tearing mode on the m; n surface would be
~!0 � ~k 	 ~V � mV�;0 � n ~V0=R0. Likewise, the ‘‘slip fre-
quency,’’ the negative of the resonant field-error frequency
at the rational surface as seen in the plasma frame, is ! �
mV�;0 � nV=R0. (The poloidal flow is strongly damped
[10] in tokamaks and hence does not respond to any
error-field-induced torque.) Expressed in terms of these
frequencies, the perpendicular viscous torque acting across
the resonant layer is

 T�;VS � 4�2R2
0

�
��r�r

@V�
@r

�
1�

1�
�

4�2R3
0�s�

2
s

nG�1; 1�
�!� ~!0�:

(12)

The boundary layer analysis in [3] utilizes stretched
variables; for consistency with that work we similarly
define Q � S1=3!=m, ~Q0 � S1=3 ~!0=m, and �̂ � S�1=3�.
(The dimensional form of these definitions is Q �
S1=3!�H, with ! being the dimensional frequency.)
Thus, the steady-state torque balance equation for the
resonant layer (T�;EM � T�VS � 0) is

 

��������b
vac
r;nm

B�

��������2 Imf�̂�Q�g

j�� �̂�Q�j2
�

P

S
� ~Q0 �Q�; (13)

where 
 � 2G�1; 1�=�s�rs��s�
2. As in [3], � � �S�1=3�0s,

P � �R=�V � �0�i�rs�=�
�rs��m�rs�� is the magnetic
Prandtl number at the resonant surface, and the perpen-
dicular viscous time scale is given by �V �
r2
s�m�rs�=�i�rs�, where �i�rs� is the (dimensional) viscos-

ity. Since S� 1 and P � 1 in a high temperature tokamak
plasma and a tearing-stable m; n mode is assumed, j�0sj �
O�1�, �
 1, and to a good approximation we may neglect
� in the above torque balance equation. The error-field
penetration threshold corresponds to the critical error-field
amplitude above which torque balance is lost, i.e., where
the approximated torque balance equation has no solution
[2]. It follows that

 

��������b
vac
r;nm

B�

��������2

crit
� max

	
P

S
� ~Q0 �Q�j�̂�Q�j

2

Imf�̂�Q�g



; (14)

where the maximum is obtained by varying Q.
Recalling S� 1, P � 1, and inspecting Sec. IIIG of [3],

a likely error-field response regime is the 1st semicolli-
sional (SCi) regime, which is applicable for �1=2D<���

2
p
Q<

���
2
p
D2P1=3. Here, � � 10�0P0=�3B

2
0� is the toroi-

dal beta, where P0 is the equilibrium plasma pressure, and
D � S1=3�s�rs�=rs. The quantity �s�rs� is the ion Larmor
radius at the resonant surface, calculated using the electron
temperature. Different asymptotic layer regimes will yield
slightly different scalings, but do not dramatically alter the
conclusions of this work. A subsequent publication will
address this.

In the �s � 1 limit neoclassical viscosity dominates
over perpendicular momentum diffusion throughout the
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bulk plasma in the vicinity of the resonant surface. In this
limit, the homogeneous part of (6) admits a WKB solution
[11] for the Green function:

 G�r; t� � �sA�r; t�
	

exp���s
R
t
r ��x�dx�; r � t;

exp���s
R
r
t ��x�dx�; t � r;

(15)

where A�r; t� � �4trb̂�t�b̂�r�
�������������������
�̂�t��̂�r�

p
��1=2, and ��x� �

b̂�x�=
����������
�̂�x�

p
. Direct evaluation gives G�1; 1� � �s=2 and


 � 1=��s�rs��
2�s�. Inserting G�1; 1� into (10) yields the

more general condition 1
 �s 
 1=	, ensuring that
NTV dominates in the bulk plasma near, but not within,
the resonant layer. For �s � 1, the integrand in (15) is
strongly localized about the point r � t, and when (15) is
inserted into (9), we find ~V0 ’ VNC


 �1�.
For simplicity, we assume Ti ’ Te, which implies the

neoclassical velocity at the resonant surface, VNC

 �1�,

scales as VNC

 ’ �R0m=�rsn��V
;i � �R0m=�rsn��V
;e, in

which V
;i�e� are the ion (electron) diamagnetic flow veloc-
ities, respectively. Hence ~Q0 � �R0m=�rsn��S1=3!
�H,
where !
 is the (dimensional) electron diamagnetic fre-
quency at the resonant surface. Using a Padé approxima-
tion valid for all values of �s, we find the error-field
penetration threshold in the SCi regime to be

 

��������b
vac
r;nm

B�

��������2

crit
’
�s�rs��2rs
�R0

P�!
�H�5=2

�
S
1=2

�
1� �� �2

1� �

�
; (16)

where � � 2
R
a
rs
���rs�=��r���dr=r�, �
 � �s�rs�=R0, and

� � �R0m=�rsn��
5=2��s.

In the limit �s 
 1, NTV is negligible throughout the
plasma and we recover the previous drift-MHD result [3].
Most notably, in the new limit �s � 1 we find that

 

��������b
vac
r;nm

B�

��������2

crit
/
P�!
�H�5=2�s

�
S
1=2

; (17)

i.e., the square of the penetration threshold increases by a

factor ��s �
������������������
�k�l=�s

q
b�rs� �

�����������
�k�V
p

b�rs� over the pre-

vious result. In this limit, the NTV torque effectively
enhances the perpendicular viscosity by reducing the typi-
cal bulk velocity profile scale length near the resonant
layer, thereby making it more difficult for a resonant field
error to lock the rational surface.

As an application of this theory, consider a class of
Ohmically heated tokamak plasmas in which the aspect
ratio R0=a and the equilibrium profiles are held fixed. By
definition, !
�H / Te

�����
ne
p

=�R0B
2
��, S / B�T

3=2
e R0=

�����
ne
p

,

�
 / T
1=2
e =�R0B��, and P / R2

0T
3=2
e =�V . In the low colli-

sionality (1=�) NTV regime �k � !2
ti=�i / T

5=2
e =�R2

0ne�.
Finally, Ohmic power balance implies Te � ��E=ne�2=5�

�B�=R0�
4=5, where �E is the energy confinement time.

Using a neo-Alcator scaling for the confinement time,
i.e., �E � neR3:25

0 [12], we find the new SCi error-field

penetration threshold scales as

 

��������b
vac
r;nm

B�

��������crit
/ neB

�1:3
� R0�

�1=2
V �: (18)

Here, � is the ratio of the ‘‘effective’’ nonresonant to
resonant error field at the resonant surface:

 � �
���������������������������������������������������������������X
�n0;m0���0;0�

jn0bn0m0=b
vac
r;nmj

2Wn0m0

s
: (19)

Empirically, the penetration threshold scales as
bvac
r;nm=B� � n�ne B

�B
� R

�R
0 with �n � 1:0, �1:2<�B <

�0:6, and 0:5<�R < 1:25 [1]. Here �V is left unspecified
because �? is unknown and no good theory exists for it in
Ohmic plasmas.

In the limit 1
 �s 
 1=	 NTV enhances perpendicu-
lar viscosity near the resonant layer, thus increasing the
critical resonant error-field strength required for locking.
This new prediction for the penetration threshold in the SCi
layer regime [3] has two novel features: (i) a stronger
dependence on electron density than previously predicted
[3] (a result in qualitative agreement with empirical scaling
studies [1] if �E=ne and �V do not depend strongly on ne),
and (ii) a dependence on the ratio � between the effective
nonresonant and resonant error-field components, a feature
that could be tested in present tokamaks to determine the
importance of the neoclassical toroidal viscosity effects.
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