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We study interactions of planetary waves propagating across the equator with trapped Rossby or Yanai
modes, and the mean flow. The equatorial waveguide with a mean current acts as a resonator and responds
to planetary waves with certain wave numbers by making the trapped modes grow. Thus excited waves
reach amplitudes greatly exceeding the amplitude of the incoming wave. Nonlinear saturation of the
excited waves is described by an amplitude equation with one or two attracting equilibrium solutions. In
the latter case spatial modulation leads to formation of characteristic defects in the wave field. The
evolution of the envelopes of long trapped Rossby waves is governed by the driven complex Ginzburg-
Landau equation, and by the damped-driven nonlinear Schrödinger equation for short waves. The
envelopes of the Yanai waves obey a simple wave equation with cubic nonlinearity.

DOI: 10.1103/PhysRevLett.99.064501 PACS numbers: 47.35.�i, 05.45.�a, 92.10.Ei

In [1,2] we studied interactions of a pair of waves
trapped in the equatorial waveguide and a planetary wave
freely propagating across the equator in the linear approxi-
mation, and showed that the planetary wave resonantly
excites the waveguide modes with significant amplitudes.
The nonlinear evolution of the excited modes was de-
scribed by the parametrically driven Ginzburg-Landau
(GL) equation and resulted in nontrivial spatiotemporal
organization. Below, by a similar technique, we attack
the problem of resonant interaction of planetary waves
with the trapped ones via the mean zonal current.
Beyond the practical importance of this case (there are
persistent zonal currents in the equatorial ocean and atmo-
sphere), the dynamics turns out to be different here. First,
the resonance is possible only for a discrete spectrum of
planetary waves. Second, the resonant growth of the
trapped waves is linear (nonmodal) and not exponential,
which leads to the damped-driven GL and nonlinear
Schrödinger (NLS) evolution equations instead of para-
metrically driven ones. Third, the nonlinear evolution of
short and long excited waves is qualitatively different, and
the evolution of nonlinear Yanai and Rossby waves is also
different due to different dispersion properties. It should be
also noted that both free wave—trapped wave—mean
flow (this Letter), and free wave—trapped wave—trapped
wave [1] mechanisms of resonant excitation are relevant
for other species of trapped waves, e.g., the coastal edge
waves, [3], or topographic Rossby or double Kelvin waves.

As in [1,2], we use the nondimensional 2-layer rotating
shallow water model on the equatorial tangent plane, writ-
ten in terms of barotropic  and baroclinic h, u � �u; v�
fields
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�
�J� ;u� � u 	 r�ẑ� r �

�
�
4
�2hu 	 ru� uu 	 rh�

�
; (2)

 ht � r 	 u � �
�
�J� ; h� �

�
4
r 	 �h2u�

�
; (3)

where the subscripts denote partial derivatives, J is the
Jacobian, and �
 1. It is assumed in (1)–(3) that both
layers have the same depth. This assumption is not crucial,
but it simplifies calculations; cf. (8) and (9) in [2].

The linear spectrum of the model consists of planetary
( � barotropic Rossby) waves which propagate at any
angle with respect to the equator

 

~ 0 � A e
i���ly� � c:c:; � � kx� �t; (4)

and have the dispersion relation

 � � �k=�k2 � l2�; (5)

and of trapped baroclinic waves
 

�~u; ~v; ~h� � �iUm;�m; iHm�Ae
i�m � c:c:;

�m � kx� �mt
(6)

with the dispersion relation

 �3
m � �k2 � 2m� 1��m � k � 0; m � 0; 1; 2; . . . ;

(7)

where m is the meridional wave number. We are interested
in the low-frequency Yanai wave with m � 0, � � 1, and
in Rossby waves with m � 1, �< 1. The functions Um,
�m, Hm decay rapidly off the equator (y � 0)
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where Hm�y� are the Hermite polynomials and prime
means y differentiation.

We consider weakly nonlinear interactions of a baro-
tropic wave (4) and a trapped baroclinic wave (6) with the
baroclinic equatorial zonal flow which is an exact solution
to (1)–(3):
 

u � ���y�; h � ���y�; v � 0;

y �u� �hy � 0; � � 0:
(9)

The parameter �1<� � 0 measures the strength of the
zonal flow. Note that such flow is still insufficiently strong
to change the barotropic and the baroclinic waves at the
lowest order. To check that such interactions produce
resonant growth of the baroclinic waves with subsequent
nonlinear saturation, the first step is to verify the synchron-
ism conditions. As seen from (2) and (3), if the zonal wave
number k and the frequency � of the barotropic wave
coincide with those of a trapped baroclinic mode, then
the latter is resonantly excited by the barotropic wave—
mean flow interaction. By virtue of (5) and (7) this is
possible if

 l2 � 2m� 1� �2
m; m � 0; 1; . . . (10)

and, hence, for �m < 1 the corresponding barotropic mode
always exists. Thus, only a discrete spectrum of barotropic
Rossby waves resonates with waveguide modes in the
presence of the equatorial current.

The next step is finding time dependence of the ampli-
tude of resonantly excited waves by removal of resonances
in (1)–(3); cf. [2]. We first apply it to the direct multi-
timescale expansion in � of the form

  �  �0��x; y; t; T; . . .� �  �1��x; y; t; T; . . .�; (11)

 

�u; v; h� � ��� �u�0�; �v�0�; �h�0���y; t; T; . . .�

� �~u�0�; ~v�0�; ~h�0���x; y; t; T; . . .�

� �u�1�; v�1�; h�1�� � . . . : (12)

Here  �0� and (~u�0�, ~v�0�, ~h�0�) are the barotropic wave (4)
and the trapped mode (6) satisfying the synchronism con-
ditions, the zonal flow (9) is ��� �u�0�; �h�0��. The corrections
�. . .��1� are assumed to be smaller than the lowest-order
fields. The slow time is T � ��t, � > 0. By removing the
resonances at the lowest order we get that both the baro-
tropic wave and the zonal flow remain unchanged, and the
amplitude of the baroclinic wave grows linearly in time

 a0AT � �kL A ; T � ���1t; (13)

where
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2
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0
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�0��:

(15)

The energy of the primary barotropic wave is infinite
compared to that of the trapped wave, which explains
that the amplitude of the former remains constant.
Similarly to [1,2] the growth of the baroclinic mode is
energetically compensated by interaction between the pri-
mary barotropic mode  �0� and the growing barotropic
correction  �1�, which is engendered by the growing baro-
clinic mode and is determined from
 

r2 �1�t �  
�1�
x �

�
4
f��@xx � @yy��u�0�v�0��

� @xy��u
�0��2 � �v�0��2�g: (16)

The interaction of  �1� with the zonal flow and the baro-
clinic wave in (2) and (3) arrests the growth of A. The level
of saturation depends on the strength of the initial zonal
flow. The maximum level of saturation O����1=2�� is
reached for the zonal flow O����1=2��. In this case, the
equation describing both the initial stage of linear growth
and its saturation arises from the rearranged asymptotic
expansions, [2,3]:
 

 �  0�x; y; t; T1; T2; . . .�

� �1=2 1�x; y; t; T1; T2; . . .� � . . . ;

�u; v; h� � ���1=2��u0; v0; h0��x; y; t; T1; T2; . . .�

� �u1; v1; h1��x; y; t; T1; T2; . . .� � . . . ;

(17)

where Tn � �n=2t,  0 contains both primary  �0� and sec-
ondary  �1� barotropic waves, and the lowest-order terms
in (u, v, h) are the same as in (12) with � � � 1

2 , � � 1
2 .

Eliminating resonances while finding the baroclinic cor-
rection (u1, v1, h1) gives

 AT2
� pA� qjAj2A � �c0A ; c0 �

kL 
a0

: (18)

The amplitude of the primary barotropic wave and the
zonal flow remain unchanged at the leading order. The
real parts of p, q are

 Rep �
1

8jlj�a0

��������Z �1�1 dyF1�y�eily
��������2
; (19)

 

Req�
1

16j�lj�a0

��������Z �1�1 dyF2�y�e
i�ly

��������2
; if �l2� l2�3k2>0;

Req� 0; if �l2� l2�3k2<0; (20)

where
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00 � 2k�Um �u0�

0 � k2�m �u0;

F2 � ��mUm�
00 � 2k�U2

m ��2
m�
0 � 4k2�mUm:

(21)

The expressions for Imp, Imq are similar, but rather
cumbersome.

Hence, Rep > 0, Req � 0 and saturation always takes
place. The ‘‘linear’’ saturation produced by RepA is due to
the interaction of the secondary barotropic mode  1 with
the zonal flow, while the ‘‘nonlinear’’ one produced by
ReqjAj2A is due to the interaction of  1 with the baroclinic
wave. The mechanism of saturation is different for short
(Req � 0) and long (Req � 0) waves.

By renormalizing A and T2 the number of parameters in
(18) may be reduced:

 AT � ei�A� ei	jAj2A � cjA j; � � Argp;

	 � Argq; Imc � 0:
(22)

For time-independent solutions, a cubic equation for jAj2

follows:

 jAj6 � 2 cos
jAj4 � jAj2 � c2jA j
2 � 0;


 � �� 	;
(23)

having either three positive roots, or a single positive root.
In the case of a single root, it is always stable, and in the
case of three roots, the largest and the smallest ones are
stable, while the intermediate one is unstable. Stable solu-
tions are attracting and, depending on the coefficients, the
origin may lie in the domain of attraction of either the
smaller or the larger root; see Fig. 1.

The final step is to include spatial modulation. We again
consider a zonal current
���1=2� and introduce in (17) the
spatial modulation scales Xn � �n=2x, n � 1; 2; . . . , [2].
The modulation equations combining two leading orders
for A and A are

 �@T1
� cbtg @X1

�A � �
1=2 i

2
��bt�00@2

X1X1
A � 0; (24)

 

�@T1
� cbcg @X1

�A� �1=2

�
�
i
2
��bc�00@2

X1X1
A� pA

� qjAj2A
�
� ��1=2c0A : (25)

Here �bt;bc are the frequencies of the barotropic and the
baroclinic waves, cbt;bcg � ��bt;bc�0 are the corresponding
zonal group velocities, and prime denotes differentiation
with respect to k. A crucial remark is that the group
velocity of the Yanai wave may differ significantly from
the group velocity of the barotropic Rossby wave of the
same frequency, e.g., jkj 
 1, cbcg �

1
2
 cbtg � �

1
jkj for

long waves. On the contrary, the group velocities of the
baroclinic and the barotropic Rossby waves of the same
frequency are practically the same.

In the case of Yanai wave excitation, the only situation
where barotropic and baroclinic waves can significantly
interact is that of ‘‘gentle’’ spatial modulation when the
fields depend on X2, and not on X1, and on T2, and not on
T1. In this case dispersion effects are weak, and we get a
nondispersive propagation of modulations of the baro-
tropic wave

 @T2
A � cbtg @X2

A � 0; (26)

and the damped-driven simple wave equation with cubic
nonlinearity for the baroclinic wave

 @T2
A� cbcg @X2

A� pA� qjAj2A � �c0A : (27)

By choosing the reference frame moving with the group
velocity of the barotropic wave cbtg , this system is reduced
to a single damped-driven nonlinear simple wave equation
with space-dependent forcing.

In the case of Rossby wave excitation, by choosing the
reference frame moving with the common group velocity
we get the linear Schrödinger equation for barotropic
modulations

 @T2
A �

i
2
��bt�00@2

X1X1
A � 0; (28)
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FIG. 1. Phase portraits of the system (22) with � � 19�=20,
cjA j � 0:3 in the ReA-ImA plane with and without nonlinear
saturation; left panel: 	 � �=2; Req � 0; right panel: 	 �
0:4�; Req � 0. Stable stationary solutions correspond to the
foci, the unstable ones correspond to the saddle points.
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FIG. 2. Excitation of a long Yanai wave, DNS of the normal-
ized envelope equations (26) and (27): left panel: profiles of
ReA�X2� (larger values) and ImA�X2�; right panel: AbsA�X2�.
Profiles at T2 � 30 in a refererence frame moving with the
barotropic wave; 	 � �0:4�, � � 19�=20, c � 1. Barotropic
wave is Gaussian with maximum amplitude 0.4. The forcing
sweeps the domains of attraction of both stationary states.
Domain-wall defects appear in locations where ReA and ImA
intersect simultaneously with the zero level.
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and the equation for baroclinic modulations

 @T2
A�

i
2
��bc�00@2

X1X1
A� pA� qjAj2A � �c0A : (29)

Both for Rossby and Yanai wave excitations the modu-
lation equations are different for waves with small and
large zonal wavelength. In the case of short enough
Yanai and Rossby waves, respectively; cf. (10) and (20)
 

jkj>
1

2
���
3
p ; m � 0;

jkj �

����������������
2m� 1

3

s
; m � 1; 2; . . .

(30)

there is no nonlinear saturation (Req � 0), while it does
work for long enough waves. Thus, for short Rossby waves
by rescaling A in (29) with the time-depending phase we
get the well-known damped—driven NLS equation. This
equation, in the case of spatially nonmodulated driver
corresponding in our context to a plane incoming baro-
tropic Rossby wave, was a subject of numerous studies
following the pioneering work [5]. It is known that depend-
ing on the values of damping and forcing it may exhibit
chaotic (with different types of chaos, e.g., [6]) or regular
behavior [7], and possesses stationary localized soliton
solutions in some windows of parameters [8]. (For Req �
0 (22) is a variant of the equation for the flat-locked states
studied in the damped-driven NLS literature). Thus, such
dynamical patterns are to be also expected in equatorial
dynamics.

A driven complex Ginzburg-Landau (CGL) equation
arises for long Rossby waves with Req � 0. The phase
diagram of the undriven CGL is well established [9]. There
are some works on driven 1d CGL in the context of
turbulence control [10]. However, we are not aware of a
systematic study of the driven 1d CGL. On general
grounds, in the case with two different flat-locked station-
ary solutions we expect appearance of the domain-wall like
defects, and hence a possibility of the defect chaos. The
coherent structures may be sought by the same method as

in the damped-driven NLS [8]. The appearance of defects
is also expected in the Yanai wave case (27).

The detailed analysis of the systems (26)–(29), will be
given elsewhere. Figures 2–4 below give some results of
direct numerical simulations (DNS) for long waves Req �

0 (see [7,8] for the DNS of damped-driven NLS corre-
sponding in our context to the excitation of short Rossby
waves). Thus, the equatorial waveguide with a baroclinic
zonal current acts as a resonator: it responds to incoming
barotropic waves by amplifying the trapped baroclinic
Yanai or Rossby waves, which are then saturated at levels
largely exceeding the amplitude of the incoming wave.
Nontrivial spatiotemporal organization and/or chaotic be-
havior result for the envelopes of thus excited waves.
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FIG. 3 (color online). Excitation of a long Rossby wave, DNS
of the normalized envelope Eqs. (28) and (29): spatiotemporal
evolution of A (left panel), and A (right panel) for�20 � X1 �

20, 0 � T2 � 10; 	 � �0:4�, � � 19�=20. Note the time-lag
between A and A.
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FIG. 4. Excitation of a long Rossby wave by a plane barotropic
wave, DNS of the normalized envelope Eq. (29) with cA � 0:4
and two different stationary solutions: AbsA�X1� at T2 � 30;
	 � �0:4�, � � 19�=20. Initial A � ie�x

2
sweeps the domains

of attraction of both stationary states; cf. Figure 1(b); the dis-
played state is nonstationary; cf. [8] for stationary structures of
similar form in damped-driven NLS.
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