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We study soliton solutions of the Kadomtsev-Petviashvili II equation ��4ut � 6uux � 3uxxx�x � uyy �
0 in terms of the amplitudes and directions of the interacting solitons. In particular, we classify elastic
N-soliton solutions, namely, solutions for which the number, directions, and amplitudes of the N
asymptotic line solitons as y! 1 coincide with those of the N asymptotic line solitons as y! �1.
We also show that the �2N � 1�!! types of solutions are uniquely characterized in terms of the individual
soliton parameters, and we calculate the soliton position shifts arising from the interactions.
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The Kadomtsev-Petviashvili (KP) equation,

 ��4ut � uux � uxxx�x � �
2uyy � 0 (1)

(subscripts x, y, and t denote partial derivatives) is perhaps
the prototypical (2� 1)-dimensional integrable system
and is a universal model for weakly two-dimensional
small-amplitude waves in the long wavelength regime
[1–3]. As such it appears in many physical settings. The
cases � � i and � � 1 are referred to as the KPI and KPII
equation. One of the hallmarks of integrability is the ex-
istence of exact N-soliton solutions for any positive integer
N. One-soliton solutions of KP are one-dimensional struc-
tures called line solitons. Since KP is an integrable system,
it was believed that the soliton parameter space of ordinary
N-soliton solutions is simply the N-fold Cartesian product
of the parameter space of one-soliton solutions, apart from
degenerate cases. It has been known, however, that for
KPII this is not the case [3]. At the same time, recent
studies have shown that the solitonic sector of KPII is
richer, and more general soliton solutions exist [4–7].
These solutions describe a rich and highly nontrivial phe-
nomenology of line-soliton interactions. The purpose of
this work is to characterize a special family of solutions
and the interactions they describe in terms of the physical
parameters of the individual solitons. Namely, we discuss
elastic N-soliton interactions, defined as those N-soliton
solutions for which the number, directions, and amplitudes
of the N outgoing solitons (asymptotic line solitons as y!
1) coincide with those of the N incoming solitons (asymp-
totic line solitons as y! �1).

Wronskian solutions of KP.—Equation (1) admits the
well-known line-soliton solution [2,3]:

 u�x; y; t� � 1
2a

2sech2�12a�x� cy�!t=a� x0��; (2)

which is in the form of a traveling-wave solution,
u�x; y; t� � U�k � x�!t�, with x � �x; y� and k �
�kx; ky� � �a;�ac�. Apart from an overall translation, the
solution depends on two parameters: the soliton amplitude,
a (taken to be positive throughout), and the soliton direc-
tion, c (that is, the soliton inclination in the xy plane: c �
tan�, where � is the angle from the positive y axis,

measured counterclockwise). Note that k and ! satisfy
the soliton dispersion relation D�k; !� � 4!kx � k

4
x �

3�2k2
y � 0.

It is also well known that many solutions of KP can be
written in Wronskian form [8]:

 u�x; y; t� � 2�log��x; y; t��xx; (3a)

where the tau function is

 ��x; y; t� �Wr�f1; . . . ; fN�; (3b)

and where the functions f1; . . . ; fN are linearly indepen-
dent solutions of the Lax pair of KP with zero potential,
namely, fy � fxx and ft � fxxx. One-soliton solutions
simply correspond to the ‘‘scalar’’ case N � 1 with f �
e�1 � e�2 , where the exponential ‘‘phases’’ are

 �m�x; y; t� � kmx� �k
2
my� k

3
mt� �0m: (4)

Then u � 1
2 �k2 � k1�

2sech2�12 ��2 � �1��, implying k �
�k2 � k1; ��k

2
1 � k

2
2�� and ! � k3

1 � k
3
2. For KPII the

phase parameters kin and kjn are real, and they determine
the soliton parameters an and cn as

 an � kjn � kin ; cn � kin � kjn : (5a)

(Here, n � 1, in � 1, and jn � 2; the indices n, in, and jn,
which are for now redundant, will be useful later.)
Equivalently, if the soliton parameters are given, the phase
parameters are

 kin �
1
2�cn � an�; kjn �

1
2�cn � an�: (5b)

Equation (5b) implies that real, nonsingular one-soliton
solutions exist for any value of amplitude and direction.

The generalization of the above to N-soliton solutions is
obtained taking fn � e�2n�1 � e�2n . Neglecting the spatial
shifts arising from interactions, these solutions simply
produce a pattern of N straight lines in the xy plane [cf.
Fig. 1(a)]. We refer to these as ordinary N-soliton solu-
tions. Similarly to one-soliton solutions, these are parame-
trized by the soliton amplitudes a1; . . . ; aN and directions
c1 . . . ; cN. Surprisingly, however, while for KPI such solu-
tions exist for any choice of amplitudes and directions, the
same is not true for KPII [3].
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General soliton solutions are obtained by taking arbi-
trary linear combinations of exponentials for the functions
f1; . . . ; fN [5,6]. Namely, fn �

PM
m�1 anme

�m , where k1 <
� � �< kM without loss of generality. Then

 ��x;y;t��det�Ke�A�

�
X

1	m1<m2<���<mN	M

Vm1;...;mN
Am1;...;mN

e�m1������mN ;

(6)

where ��x; y; t� � diag��1; . . . ; �M�, K � �kn�1
m �, A �

�anm� is the N 
M coefficient matrix, Am1;...;mN
is its N 


N minor obtained from columns m1; . . . ; mN , and
Vm1;...;mN

> 0 is a Van der Monde determinant. The spatio-
temporal dependence of the tau function is confined to the
exponential phases. Also, each term in Eq. (6) contains
combinations of N distinct phases �m1

; . . . ; �mN
chosen out

of �1; . . . ; �M. Finally, note that transformations A! A0 �
GA with G 2 GLN�R� amount to a rescaling ��x; y; t� !
det�G���x; y; t�, which leaves u�x; y; t� invariant [9]. Thus,
��x; y; t� describes an orbit in the Grassmannian GrN;M�R�
[5]. The GLN�R� invariance can be exploited to write A in
reduced row-echelon form (RREF).

The tau function in Eq. (6) is parametrized by the M
phase parameters k1; . . . ; kM and by the coefficient matrix
A [10]. Nonsingular solutions are obtained when allN 
 N
minors of A are non-negative. Asymptotically as y! �1,
the solution becomes a linear superposition of one-soliton
solutions, with the amplitude and direction of each soliton
given by Eq. (5a) for a specific pair of indices in and jn out
of 1; . . . ;M [6]. We say that A is irreducibile if it is rank N
and, when put in RREF, each column contains at least one
nonzero element, and each row contains at least another
nonzero element in addition to the pivot. Any irreducible
coefficient matrix generates a solution of KPII in which
N� � M� N incoming solitons (asymptotic solitons as
y! �1) interact to become N� � N outgoing solitons
(asymptotic solitons as y! 1) [6]. Each outgoing soliton
is identified by an index pair �i�n ; j�n �, with i�n < j�n , where
i�1 ; . . . ; i�N label the N pivot columns of A. Similarly, each
incoming soliton is identified by an index pair �i�n ; j�n �,
with i�n < j�n , where j�1 ; . . . ; j�N label the M� N nonpivot
columns of A. It is then clear that N-soliton solutions are
produced when M � 2N. Not all N-soliton solutions are
elastic, however: elastic solutions are those for which i�n �
i�n and j�n � j�n for all n � 1; . . . ; N, implying that
i�1 ; . . . ; i�N and j�1 ; . . . ; j�N form a disjoint partition of
1; . . . ; 2N.

Two-soliton solutions.—The simplest interactions of
course arise in 2-soliton solutions. It was shown [5] that
there are three types of elastic 2-soliton solutions, whose
coefficient matrices Aord, Ares, and Aasymm are, respectively,

 

1 1 0 0
0 0 1 1

� �
;

1 0 �1 �1
0 1 a2;3 a2;4

� �
;

1 0 0 �1
0 1 1 0

� �
;

with a2;3 > a2;4 > 0. We refer to the two additional types,
respectively, as resonant and asymmetric (the reason for

these names will be clear shortly). From the asymptotics of
��x; y; t� as y! �1 one obtains that the individual line
solitons are identified, respectively, by the index pairs �1; 2�
and �3; 4� for ordinary 2-soliton solutions, �1; 3� and �2; 4�
for resonant solutions, and �1; 4� and �2; 3� for asymmetric
solutions. The requirement that k1; . . . ;kM are well or-
dered, however, yields relations among the soliton parame-
ters [11]. Denote (an; cn) and (an0 ; cn0) the individual
soliton parameters, with n � 1; 2 and n0 � 2; 1. (Again, n
and n0 are for later convenience.) One can show that (i) an
ordinary two-soliton solution exists if and only if

 jcn � cn0 j> an � an0 ; (7a)

(ii) a resonant two-soliton solution exists if and only if

 jan � an0 j< jcn � cn0 j< an � an0 ; (7b)

(iii) an asymmetric two-soliton solution exists if and only if

 jcn � cn0 j< jan � an0 j: (7c)

Since these inequalities are mutually exclusive, the three
types of solutions divide the soliton parameter space of
amplitudes and directions into three disjoint sectors. That
is, exactly one type of elastic 2-soliton solution exists for
any given choice of soliton amplitudes and directions. Note
however that, unless c1 � c2, solutions of each type exist
for any choice of soliton directions [12]. For example,
Fig. 2 shows a resonant and an asymmetric 2-soliton
solution with the same soliton directions as the ordinary
solution in Fig. 1(a) [13].

Position shifts and degenerate sector.—The difference
between resonant interactions versus ordinary or asymmet-
ric ones is apparent: resonant interactions are mediated by
a collection of Y unctions [such as the one in Fig. 1(b)],
each of which satisfies Miles’ resonance conditions k1 �
k2 � k3 and !1 �!2 � !3 [14]; in contrast, both ordi-
nary and asymmetric interactions manifest as X junctions
[15]. Ordinary and asymmetric interactions also differ,
however: Denote, respectively, �xn and �xn � �xn=an
the absolute and the reduced position shift of the nth
soliton as y! �1 as a result of the interaction. It is
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FIG. 1. Left: an ordinary 2-soliton solution of KPII with
�k1; . . . ; k4� � ��

1
4 ;

1
4 ;

3
4 ;

5
4�, resulting in soliton amplitudes

�a1; a2� � �
1
2 ;

1
2� and directions �c1; c2� � �0; 2�. Right: A Miles

resonance with �k1; k2; k3� � ��
1
2 ;

1
2 ;

3
2�. The soliton directions

are the same, but now �a1; a2� � �1; 1�. In all figures, the
horizontal and vertical axes are, respectively, x and y, and the
graph shows contour lines of logu�x; y; t� at fixed time.
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 �xn � sgn�cn � cn0 � logSnn0 � logScoeff ; (8a)

with

 Snn0 �
��������
�cn � cn0 �

2 � �an � an0 �
2

�cn � cn0 �2 � �an � an0 �2

��������; (8b)

 Scoeff � jAjnjn0Ainin0=�Ainjn0Ain0 jn�j
sgn�cn�cn0 �: (8c)

Explicitly, Scoeff � 1 for ordinary and asymmetric solu-
tions, while Scoeff � �a2;3=a2;4 � 1�sgn�cn�cn0 � for resonant
solutions. In all cases the constants �0m cancel (implying
that individual soliton translations do not affect the posi-
tion shift), and the ‘‘center of mass’’ invariance a1�x1 �
a2�x2 � 0 holds. From Eqs. (8) it follows that (i) for
ordinary solutions logSnn0 > 0 [cf. Fig. 3(a)] and it can
take any positive value depending on the soliton parame-
ters; (ii) for asymmetric solutions logSnn0 < 0 [cf.
Fig. 3(b)] and it can take any negative value; (iii) for
resonant solutions both logSnn0 and logScoeff can take any
real value, and the sign of logSnn0 coincides with that of
�c2 � c1�

2 � �a2
1 � a

2
2�. Figure 4 shows a ‘‘bow-tie’’ solu-

tion, namely, a resonant solution with a large position shift
arising from the coefficient matrix via Scoeff .

The boundaries of the three sectors of the soliton pa-
rameter space are given the hyperplanes jc2 � c1j � a1 �
a2 and jc2 � c1j � ja1 � a2j. As the soliton parameters
approach these boundaries, all position shifts tend to in-
finity, and two of the four phase parameters coalesce. In
this limit, Miles’ resonance conditions are satisfied, and
each type of solution reduces to a Y junction, such as the
one shown in Fig. 1(b). Figure 3 shows an ordinary and an
asymmetric solution that are both almost degenerate, re-
sulting in a large position shift.

Multisoliton solutions.—The generalization of these re-
sults to N-soliton solution is naturally formulated in terms
of a direct and an inverse problem. The inverse problem
consists in characterizing the soliton solution arising from
given phase parameters and coefficient matrix. This prob-
lem was studied in Refs. [5–7]. In particular, the N 
 2N
coefficient matrices that lead to disjoint index pairs (and
thus to elastic solutions) were identified [5] as those whose

zero minors satisfy a duality relation: Am1;...;mN
� 0 if and

only if Am01;...;m0N � 0, where m01; . . . ; m0N are the comple-
ment of m1; . . . ; mN in 1; . . . ; 2N. Also, a constructive
method was given [6] to find the index pairs (and thus
the soliton amplitudes and directions) from the coefficient
matrix.

Conversely, the direct problem consists in characterizing
the soliton interactions in terms of the soliton parameters
a1; . . . ; aN and c1; . . . ; cN . To do so, note that each choice
of soliton parameters defines a set of 2N phase parameters
via Eq. (5b). Sorting these into an ordered list yields an
index pair �in; jn� for each soliton, corresponding to the
position of its phase parameters in the list. The issue of the
existence of an elastic N-soliton solution with the given
soliton parameters is then translated into that of the exis-
tence of a coefficient matrix that generates the given set of
index pairs. This is a highly nontrivial problem, however,
which is closely related to the classification of Grtnn

N;M, the
totally nonnegative part of GrN;M�R�. Fortunately, the latter
problem was recently solved [16] by introducing a refine-
ment of the Schubert cell decomposition of GrN;M�R�. One
can now use the finer decomposition of Grtnn

N;2N to show that
a coefficient matrix exists for any choice of disjoint index
pairs. Many combinatorial properties of the solutions were
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FIG. 2. A resonant (left) and an asymmetric (right) 2-soliton
solution with the same soliton directions in the xy plane as the
ordinary solution in Fig. 1(a). The phase parameters are
�k1; . . . ; k4� � ��1; 0; 1; 2� and �k1; . . . ; k4� � ��

1
2 ;�

1
4 ;

1
4 ;

5
4�, re-

spectively, resulting in soliton amplitudes of �a1; a2� � �2; 2�
and �a1; a2� � �

1
2 ; 3�.
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FIG. 3. Position shifts of almost-degenerate 2-soliton solutions
with same soliton directions as in Fig. 1(a). Left: An ordinary
solution with �k1; . . . ; k4� � ��

1
2 �1� "�;

1
2 �1� "�;

1
2 ;

3
2 �.

Right: An asymmetric solution with �k1; . . . ; k4� � ��
1
2 


�1� "�;� 1
2 ;

1
2 ;

5
2 �1� "��. In both cases " � 10�20.
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FIG. 4. A ‘‘bow-tie’’ resonant solution, obtained with
�k1; . . . ; k4� � ��1;� 1

4 ;
3
4 ; 2�, a2;3 � 1� ", a2;4 � 1, and " �

10�40. Left: t � �15. Right: t � 7. Here the intermediate sol-
itons intersect each other during a finite range of values of time.
The interaction among the asymptotic solitons, however, is al-
ways resonant (i.e., mediated by Y junctions).
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derived in [5,7] assuming existence. In particular, one finds
that there exist �2N � 1�!! types of elastic N-soliton
solutions [17].

The types of solutions are uniquely identified by the
soliton parameters. Define the degree of overlap between
two pairs �in; jn� and �in0 ; jn0 � with in < in0 as follows: no
overlap if jn < in0 , partial overlap if in0 < jn < jn0 , and
total overlap if jn > jn0 [5]. The degree of overlap deter-
mines the type of pairwise interaction among solitons n
and n0 via certain zero minor conditions. More precisely,
the pairwise interaction is ordinary (denoted by nOn0) if
there is no overlap, resonant (denoted by nRn0) if there is
partial overlap, and asymmetric (denoted by nAn0) if there
is total overlap. In turn, however, the degree of overlap is
determined by which one of Eqs. (7) holds. Thus, the
choice of pairs is in 1-to-1 correspondence with the specific
combination of 2N�N�1�=2 pairwise inequalities [18].
Therefore, the soliton parameter space of the 2N ampli-
tudes and directions is also divided into �2N � 1�!! disjoint
open sectors via Eqs. (7), and each type of elastic N-soliton
solution is uniquely characterized in terms of the soliton
amplitudes and directions. As an example, Fig. 5 shows
two elastic 3-soliton solutions, corresponding to different
combinations of pairwise interactions.

The position shift of the nth soliton in an elastic
N-soliton solution can be obtained from the asymptotics
as y! �1 in a similar way as for 2-soliton solutions:

 �xn �
X

1	n0�n	N

sgn�cn � cn0 � logSnn0 � logScoeff ; (9)

with Snn0 as in Eq. (8b), and where Scoeff is now the ratio of
four appropriate N 
 N minors of A. One can also identify
the degenerate sector of the N-soliton parameter space.
Indeed, when the soliton parameters are such that one or
more of the inequalities in Eqs. (7) is replaced by an equal
sign, inelastic N-soliton solutions are obtained. In turn, this
condition implies that two or more of the 2N phase pa-
rameters obtained from the soliton parameters via Eq. (5b)
coincide. Of course, like the elastic sector (and unlike the
2-soliton case) many different types of inelastic N-soliton
solutions exist. Their classification is still an open problem.

Conclusion.—Since KP arises in many different set-
tings, these results should have a wide range of applicabil-

ity. Moreover, since aspects of Miles’ resonance have been
experimentally verified [19,20], we expect that it will also
be possible to observe the more general interactions de-
scribed here.

I thank M. J. Ablowitz, S. Chakravarty, Y. Kodama,
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