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We establish analytically the interactions of electromagnetic wave with a general class of spherical
cloaks based on a full wave Mie scattering model. We show that for an ideal cloak the total scattering cross
section is absolutely zero, but for a cloak with a specific type of loss, only the backscattering is exactly
zero, which indicates the cloak can still be rendered invisible with a monostatic (transmitter and receiver
in the same location) detection. Furthermore, we show that for a cloak with imperfect parameters the
bistatic (transmitter and receiver in different locations) scattering performance is more sensitive to �t �������������
�t=�t

p
than nt �

����������
�t�t
p

.
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Recently, invisibility cloaking has received much atten-
tion [1–11]. The design process for the cloak is mostly
based on a coordinate transformation [4]. An optical con-
formal mapping method has also been used for the design
of a medium that creates perfect invisibility in the ray
tracing limit [6]. The design approach in Ref. [4] started
from Maxwell’s equations, which indicated such cloaking
should be effective at all frequencies. Cummer et al. dem-
onstrated the full wave cylindrical cloaking but with purely
numerical calculations that do not provide as much insight
into the physics as an analytical approach [2]. The analyti-
cal demonstrations reported so far are mostly in the geo-
metrical optics limit or in the electrostatic or magnetostatic
limit [4–6]. Since both of the two limiting cases include
approximations in Maxwell’s theory, it is very necessary to
demonstrate analytically whether perfect invisibility,
which can be characterized by a zero cross section, is
achievable under any wavelength condition. Furthermore,
none of the methods reported in [4–6] provides analytical
solutions on how sensitive the nonideal cloaks are to the
material perturbations as well as how good the cloaks are in
terms of bistatic scattering.

In this Letter, the interactions of electromagnetic wave
with the cloaks are analytically established based on a full
wave Mie scattering model [12–14]. Since the cloak is
both anisotropic and inhomogeneous [4], the Mie scatter-
ing theory is extended to be applicable to this special case,
and then the analytical expressions of the electromagnetic
field in the whole space are rigorously calculated. We show
that for an ideal cloak with the parameters specified in
Ref. [4], the total scattering cross section is absolutely
zero. Furthermore, the performance and sensitivity of the
cloak with nonideal parameters are quantitatively calcu-
lated and the physics behind the phenomenon are
interpreted.

Figure 1 shows that an Ex polarized plane wave with unit
amplitude, Ei � x̂eik0z, is incident upon the coated sphere
along the ẑ direction. k0 � !

�����������
�0�0
p

is the wave number in
air. The time dependence of e�i!t is suppressed. Without

loss of generality, we assume the inner sphere (r < R1) has
a permittivity of �1 and permeability of �1. The cloak
(R1 < r < R2) is a kind of rotationally uniaxial media
characterized by

 

��� � ��r�r� � �t�r̂ r̂��t
��I ��� � ��r�r� ��t�r̂ r̂��t

��I;

(1)

where ��I � r̂ r̂��̂ �̂��̂ �̂ , �t and �t are the permittivity
and permeability along the �̂ and �̂ direction, �r�r� and
�r�r� are the permittivity and permeability along the r̂
direction, and both of them are functions of r. The field
expressions for the wave propagation inside the cloak are
first studied. For source free cases, we decompose the fields
into TE and TM modes (with respect to r̂) by introducing
the scalar potentials, �TM and �TE:
 

BTM � 5� �r̂�TM�;

DTM �
1

�i!
f5 � � ����1 	 5 � �r̂�TM��g;

BTE �
1

�i!
f5 � �����1 	 5 � �r̂�TE��g;

DTE � �5��r̂�TE�:

(2)

Using Eqs. (1) and (2) and after some algebraic manipula-
tions, we can obtain the wave equations for �TM and �TE:

FIG. 1. Configuration of scattering of plane wave by a sphere
coated with a cloak.
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where kt � !
����������
�t�t
p

; (SR) denotes the anisotropic ratio of
the cloak, for TM wave, �SR� � �t=�r, and for TE wave,
�SR� � �t=�r. Using the separation of variables method
and assuming � � f�r�g���h���, we get h��� as har-
monic functions: h��� � e
im�, g��� as associated
Legendre polynomials: g��� � Pmn �cos��, and f�r� as the
solution of the following equation:

 

�
@2

@r2 �

�
k2
t � �SR�

n�n� 1�

r2

��
f�r� � 0: (4)

If we take the parameters suggested in [4]: �t � �0
R2

R2�R1
,

�r � �t
�r�R1�

2

r2 , �t � �0
R2

R2�R1
, and �r � �t

�r�R1�
2

r2 , then

for both TE and TM modes, we get �SR� � r2

�r�R1�
2 .

Therefore, the solution of Eq. (4) is

 f�r� � kt�r� R1�bn�kt�r� R1��; (5)

where bn is the spherical Bessel function. From the above
analysis, we see that the solutions of Eq. (3) in the cloak
layer are composed of a superposition of Bessel functions,
associated Legendre polynomials, and harmonic functions.

In order to match the boundary conditions on the spheri-
cal surface, the incident fields are expanded in terms of
spherical harmonics. With the solutions of Eq. (3) for the
cloak layer, we can get the scalar potentials, respectively,
for the incident fields (r > R2), the scattered fields (r >
R2), the internal fields (r < R1), and the fields of the cloak
layer (R1 < r < R2), to be of the form:

 

�i
TM �

cos�
!

X
n

an n�k0r�P1
n�cos��;

�i
TE �

sin�
!�0

X
n

an n�k0r�P1
n�cos��;

(6)

 

�s
TM �

cos�
!

X
n

anT
�M�
n �n�k0r�P

1
n�cos��;

�s
TE �

sin�
!�0

X
n

anT
�N�
n �n�k0r�P

1
n�cos��;

(7)

 

�int
TM �

cos�
!

X
n

c�M�n  n�k1r�P1
n�cos��;

�int
TE �

sin�
!�0

X
n

c�N�n  n�k1r�P
1
n�cos��;

(8)

 

�c
TM �

cos�
!

X
n

fd�M�n  n�kt�r� R1��

� f�M�n �n�kt�r� R1��gP
1
n�cos��;

�c
TE �

sin�
!�0

X
n

fd�N�n  n�kt�r� R1��

� f�N�n �n�kt�r� R1��gP
1
n�cos��;

(9)

where an �
��i��n�2n�1�

n�n�1� , n � 1; 2; 3; . . . , �0 �
��������������
�0=�0

p
,

k1 � !
�����������
�1�1
p

. T�M�n , T�N�n , d�M�n , d�N�n , f�M�n , and f�N�n are
unknown expansion coefficients.  n���, �n��� and �n���
represent the Riccati-Bessel functions of the first, the
second, and the third kind, respectively [15]. Using
Eq. (2), the electromagnetic fields in the three regions
can be expanded in terms of the corresponding scalar
potentials [16]. By applying the boundary conditions at
the surface, we can get four equations at r � R1 and four
equations at r � R2. Note that there are two equations at
r � R1 given by:

 

�t
�1
c�N�n  n�k1R1� � d�N�n  n�0� � f

�N�
n �n�0� (10)

 

�t

�1
c�M�n  n�k1R1� � d�M�n  n�0� � f

�M�
n �n�0�: (11)

We see  n�0� � 0 and �n�0� is an infinite term for all
n � 1. Since the field in the hidden sphere should be finite,
f�N�n and f�M�n must be kept zero. We see the field in the
hidden object is decoupled with those in the other regions.
From the other four equations at the boundary of r � R2,
we can calculate the following coefficients:

 T�M�n � �
 0n��0� n��t� � ��t=�0� n��0� 0n��t�
� 0n��0� n��t� � ��t=�0��n��0� 0n��t�

(12)

 T�N�n � �
 n��0� 

0
n��t� � ��t=�0� 

0
n��0� n��t�

�n��0� 
0
n��t� � ��t=�0��

0
n��0� n��t�

(13)

 d�M�n � an
i�t=�0

� 0n��0� n��t� � ��t=�0��n��0� 
0
n��t�

(14)

 d�N�n � an
i�t=�0

� 0n��0� n��t� � ��0=�t��n��0� 
0
n��t�

; (15)

where �0 � k0R2, �t � kt�R2 � R1�, and �t �
������������
�t=�t

p
. If

�t � �0
R2

R2�R1
, �t � �0

R2

R2�R1
, then �t � �0, �t � �0.

Using the Wronskians for the spherical pairs of solutions,
the above four equations are simplified to be:

 T�M�n � T�N�n � 0; d�M�n �
�t
�0
an; d�N�n �

�t

�0
an:

(16)

It is very interesting to see that the scattering coefficients,
T�M�n and T�N�n , are equal to zero. The exactly zero scattered
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field indicates the reflectionless behavior of the perfect
cloak [4]. It should be noted that our mathematical dem-
onstration is applicable to any wavelength condition.
Figure 2 shows the calculated electric fields and the
Poynting vectors due to an Ex polarized plane wave inci-
dence onto a cloak with R1 � 0:5	0 and R2 � 	0 (	0

denotes the wavelength in free space). We see that the
hidden object is completely hide from the waves, corrob-
orating the effectiveness of the cloak proposed in [4].
There is no on-axis ray problem [4] here since the
Poynting power becomes zero as the field penetrate deep
into the cloak [2].

The most interesting thing is that Eqs. (12)–(15) give
further information. For example, it is known that loss is
often an important issue. When the electric and magnetic
loss tangents are introduced, the scattering coefficients
T�M�n and T�N�n become nonzero. In Fig. 3, we plot the
bistatic scattering as a function of the scattering angle �
for the loss tangent of 0.01, 0.1, and 1, respectively. The
vertical axis represents the normalized differential cross
sections, jS1���j2

k2
0
R

2
2

, jS2���j2

k2
0
R

2
2

, where S1��� and S2��� are defined

by [12]:

 S1��� � �
X
n

�2n� 1�

n�n� 1�
�T�M�n 
n��� � T

�N�
n �n����;

S2��� � �
X
n

�2n� 1�

n�n� 1�
�T�M�n �n��� � T

�N�
n 
n����:

(17)

In the above two equations 
n��� and �n��� are related to
the associated Legendre functions by 
n��� � �

P1
n�cos��
sin�

and �n��� � �
dP1

n�cos��
d� , respectively [15]. For the configu-

ration shown in Fig. 1, S1��� and S2��� represent the
scattering patterns in the yz and xz planes, respectively.
The two curves of S1��� and S2��� overlap because T�M�n �

T�N�n . From Fig. 3 we see that the scattered power increases
as the loss increases. A more interesting phenomenon is
that the backscattering magnitude is always zero [because

T�M�n � T�N�n , and 
n��� � ��n���j��180�], which is very
different from conventional scattering from regular parti-
cles [12]. The calculated field distribution in the xz plane
for the spherical cloak with tan� � 0:1 (Fig. 3, inset) is
similar to the simulation results of a cylindrical cloak with
the same type of loss [2]. However, our analytical calcu-
lation shows that only the spherical cloak in this particular
lossy case exhibits exactly zero backscattering. This
unique property of the spherical cloak indicates the
cloaked object can still completely hide from a monostatic
radar detection.

Since the constitutive parameters for a perfect cloak are
very difficult to realize, nonideal material parameters are
more often used in the measurements [1,2]. Hence, it is
worthwhile to study how the imperfect material parameters
quantitatively affect the performance of the cloak. We
calculate the normalized scattering cross section Qsca �

2
�k0R2�

2

P
n�2n� 1��jT�M�n j2 � jT

�N�
n j2� as �t changes under

three cases: (Case I) keep �t � �0
R2

R2�R1
constant; (Case

II) keep the impedance �t �
������������
�t=�t

p
� �0 constant; and

(Case III) keep the refractive index nt �
��������
�t�t
�0�0

q
� R2

R2�R1

constant. The results are shown in Fig. 4(a), where the
horizontal axis �t is normalized by the ideal parameter
�0

R2

R2�R1
. We see that when �t is equal to the ideal parame-

ter, the corresponding �t in the three cases are all equal to
�0

R2

R2�R1
, and Qsca is equal to 0, meaning the cloak is

perfect. When �t slightly changed from the ideal parame-
ter, Qsca in Case I and Case II increase from zero more
rapidly than that in Case III. This is because in Case III, the
refractive index is kept constant, and the direction of
Poynting vector inside the cloak is mostly close to the
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FIG. 2 (color online). Ex field distribution and Poynting vec-
tors due to an Ex polarized plane wave incidence onto an ideal
cloak with R1 � 0:5	0 and R2 � 	0.
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FIG. 3 (color online). Normalized differential cross sections
for a cloak (R1 � 0:5	0, R2 � 	0) with a specified loss tangent
introduced in each component of the permittivity and perme-
ability. The inset shows the Ex field for the case of tan� � 0:1.
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ideal case, as shown in Fig. 4(b). Therefore, we can con-
clude that the bistatic scattering performance of the cloak
is more sensitive to �t �

������������
�t=�t

p
than nt �

����������
�t�t
p

.
However, it should be noted that from Eqs. (12), (13),
and (17) the cloak in Case II is still invisible with mono-
static detection since the matched impedance results in a
zero backscattering.

It is important to note that all the above analyses are
valid independent of the material parameters of the hidden
object. Even when the material parameters of the cloak are
imperfect, the incident fields still cannot penetrate into the
hidden object, and the scattered power is totally introduced
by the cloak itself. This unusual phenomenon is based on
the assumption that the material parameters of the cloak in
the radial and transverse axis always have the same form of
r � t

�r�R1�
2

r2 , where  represents� or �. Hence, Eqs. (5),

(10), and (11) always hold, leading to f�N�n � 0 and f�M�n �

0, and the material parameters in the hidden object give no
contribution to the outside field. If some perturbations are
introduced in the relationship of the radial and transverse
material parameters, the solution of Eqs. (4) should be
revisited, and the interaction of the outside field with the
hidden object cannot be omitted.

In conclusion, we have demonstrated the interactions of
the electromagnetic wave with the cloaks by rigorously
solving Maxwell equations in the spherical coordinate
system. The fields and bistatic scattering cross section of
a general class of cloaks (ideal and nonideal) have been
quantitatively solved by the full wave scattering method.
The physics behind the invisibility of the cloak has been
interpreted. Our method was shown to be computational
efficient, which is very useful for cloak design and
applications.
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FIG. 4 (color online). (a) Normalized scattering cross section
of a cloak as functions of �t for three different cases: (Case I)
keep �t � �0

R2

R2�R1
constant; (Case II) keep �t � �0 constant;

and (Case III) keep nt �
R2
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constant. (b) Ex field distribution

and Poynting vectors for Case III with �t � 2�0
R2
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and �t �

1
2�0

R2
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.
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