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We show both theoretically and experimentally that biphoton wave packets generated via spontaneous
parametric down-conversion can be strongly anisotropic and highly entangled. The conditions under
which these effects exist are found and discussed.
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Introduction.—Entanglement of biphoton states formed
in spontaneous parametric down-conversion (SPDC) is a
hot topic of modern quantum optics and quantum informa-
tion. The most often considered kind of entanglement in
this field is the entanglement with respect to the photon
polarization variables. But a growing interest in entangle-
ment with respect to continuous variables has arisen, such
as photon momentum or coordinates [1–10], frequency
entanglement [11,12]. Note that compared to discrete var-
iables, entanglement in continuous variables is much more
complicated, far less investigated, and many well-known
features of entangled discrete-variable states do not have
direct counterparts in the case of continuous variables. In
this Letter we investigate both theoretically and experi-
mentally angular (momentum) structure of SPDC biphoton
coincidence and single-photon distributions, with special
attention paid to a proper account of the anisotropy effects.
Namely, it turns out that the biphoton coincidence angular
distributions depend strongly on the crystal orientation. As
far as we know, this effect has never been observed earlier
experimentally or described theoretically.

Also, we evaluate the degree of entanglement for bipho-
ton states, which is shown to be very high. To do this we
apply here the recently suggested operational method
[9,13], which relates the degree of entanglement to the
parameter R � �k�s�=�k�c�. �k�s� and �k�c� are the experi-
mentally measurable single-particle and coincidence
widths of the corresponding photon momentum wave
packets. For nonentangled states R � 1, whereas any de-
viations from the exact equality of �k�s� � �k�c� serves as
an indication that the bipartite state under consideration
becomes entangled. For evaluating the degree of entangle-
ment of the 2D biphoton state as a whole, we use a measure
Roverall given by the product of parameters Rk and R? for
two orthogonal geometries.

Theoretical description.—Let us consider a collinear
and degenerate type I SPDC process, when extraordinary
pump photon of a frequency !p decays in two ordinary
photons (signal and idler) with equal frequencies!p=2 and
propagating more or less along the pump beam. In 3D,
refractive index surfaces for extraordinary [ne� ~r;!p�] and
ordinary [no� ~r;!p=2�] waves in an anisotropic crystal are,
correspondingly, an ellipsoid and a sphere. Figure 1(a)
shows sections of these figures by three coordinate planes
(xz), (xy), and (yz). The optical axis of a crystal is taken
directed along the Ox axis. The arc DB is a part of the
circle by which the sphere and ellipsoid cross each other.
We assume that the pump is not a single plane wave but is
given by a coherent superposition of plane waves with
wave vectors ~kp filling a cone, the axis of which coincides
with the Oz0 axis, and the angular width � is finite. The
detectors are assumed to be installed along some line O0�
in the plane (�x0O0y0�). Axis O0x0 belongs to the plane (xz)
andO0y0 k Oy. The angle � between O0� andO0x0 serves a
varying parameter. The cases � � 0 (O0� k O0x0) and � �
�=2 (O0� k O0y0) are referred to below as the k and ?
geometries of measurement.

FIG. 1. (a) Octant of the refractive index surfaces ne�~r� and
no�~r� for pump and signal photons; (b), (c) are two perpendicular
section by the planes? and k shaded in (a);O0� is the axis in the
plane (x0y0) perpendicular to O0�.
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To describe the main effects we predict in the most
straightforward way, we consider here explicitly only the
case when transverse ( ? to Oz0) components of wave
vectors ~kp, ~k1, and ~k2 belong to the observation plane
��z0�. Generalizations will be described elsewhere [14].
In the approximation of a wide crystal the condition kp� �
k1� � k2� holds, and the momentum-representation bipho-
ton wave function is known [4] to be given by

 ��k1�; k2�� / E
�
p�k1� � k2��sinc

�L�kpz0 � k1z0 � k2z0 �

2

�
;

(1)

where L is the crystal length in the z0 direction, Ep is the
momentum representation of the pump wave transverse
profile, and longitudinal components of the photon wave
vectors are expressed via transverse ones as k1z0 � �k

2
1 �

k2
1��

1=2, k2z0 � �k2
2 � k

2
2��

1=2, and kpz0 � �k2
p � k2

p��
1=2.

In the near-axis approximation the square roots deter-
mining k1;2;pz0 can be expanded in powers of k1;2� with only
zero- and second-order terms to be retained. The zero-
order term kp � k1 � k2 is usually dropped [5,7,9,10].
Our key observation is that this can be done only in the
? geometry (� � �=2), when the pump wave vector ~kp
has the same length for all its directions in the (z0, �) plane
[see Fig. 1(b)]. At all other values of the angle � the
detuning kp � k1 � k2 cannot be taken identically equal
zero because the term kp itself depends on the orientation

of the vector ~kp. A typical picture showing an orientation-
dependent length of the pump wave vector is shown in
Fig. 1(c) for the k geometry (� � 0).

Though formally looking as zero order in k1;2�, the
detuning kp � k1 � k2 can be expressed via transverse
components of the wave vectors of emitted photons and
it appears, actually, to be linear in k1;2�. This connection
follows directly from the geometry of Fig. 1(c). Not dwell-
ing here on further details of the derivation (see Ref. [15] ),
let us reproduce only the final result of transforming Eq. (1)
and expressing it in terms of scattering angles outside of
the crystal �1;2 � 2k1;2�c=k

�0�
p

 

���1; �2� / ~E�p

�
�1 � �2

2

�
sinc

�
Lk�0�p
16no

�4n0p cos���1 � �2�

� ��1 � �2�
2�

�
: (2)

Here ~Ep��p� is the pump amplitude angular distribution
outside the crystal, �p �

1
2 ��1 � �2� is the angle between

the pump wave vector outside of the crystal and the laser
axis Oz0, n0p � @np=@#pj#p�0, #p is the angle between ~kp
(in the crystal) and Oz0 calculated in the k geometry, and
k�0�p � !p=c. For LiIO3 crystal and �p � 325 nm we con-
sider here, n0p � �0:1436 and ’0 � 60:44	 [in Fig. 1(c)].

Anisotropy.—Equation (2) differs from the traditional
one [5,7,9] by the first term in the square brackets in the
argument of the sinc function. The role of this term is
illustrated by Fig. 2 where the squared sinc function of
Eq. (2) is plotted in its dependence �1 at �2 � 0 and three
different values of �. Starting from � � �=2 with a de-
creasing value of �, the structure of the curves in Fig. 2
changes drastically. Already at very small deviations from
� � �=2 a single wide peak splits in two peaks (the second
one is due to the noncollinear phase matching), spacing
between them grows, and the peaks are getting very nar-
row. For comparison, the width of the only peak at � �
�=2 is 24 mrad, whereas at � � 0 it shrinks to 0.5 mrad.

Coincidence and single-particle distributions.—
Coincidence distributions of photons are determined by
the squared absolute values of the narrower of two function
in the product of Eq. (2). In the cases of k and? geometry
the narrower functions are, correspondingly, sinc2 and E2

p.
In Fig. 3 the curve describing the dependence of these
functions on �1 at �2 � 0 are plotted in solid lines. The
pump E2

p in theO0y0 direction is taken in the form of a sinc2

function with the divergency � � 4:1 mrad. The half-
height widths of the coincidence distributions are easily
found directly from Eq. (2) to be given by:

 ���c�k1 �
2:784
 4n0

Lk�0�p jn0pj
; ���c�?1 � 2�: (3)

Numerically ���c�k1 � 0:5 mrad and ���c�?1 � 8:2 mrad.
Their ratio ���c�?1 =���c�k1 � 16:4 can be considered as a
measure of anisotropy, which is seen to be quite high.

Single-particle distribution in the k geometry is received
by a direct integration of the squared wave function (2)
over �2. To find the single-particle distribution in the ?

FIG. 2. The sinc2 function of Eq. (2) at (a) � � 90	,
(b) � � 84	, and (c) � � 0, �1 in radians; the crystal length L
is taken equal to 1.5 cm.

FIG. 3. Coincidence (solid lines) and single-particle (dashed
lines) angular distributions for (a) � � �=2 and (b) � � 0; all
curves are normalized by one at their maxima.
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geometry we have to take into account contribution of
noncollinear SPDC phase matching with k2� � 0 [14]. In
both cases, we come to rather simple formulas
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k

d�1

/ sinc2
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1

2jn0pj�

�
;

dw�s�?
d�1

/ exp
�
�

ln�2�

�2
0

�4
1

n02p

�
:

(4)

Here the pump in the O0x0 direction is taken Gaussian with
�0 � 1:5 mrad, which corresponds to the experimental
conditions described below. The single-particle angular
distributions in both geometries are shown in Fig. 3 by
dashed lines. The asymmetry of single-particle distribution
for k geometry appears from the factors which are not
shown in Eq. (4) [14]. The half-height widths of the
single-particle distributions are given by

 ���s�k1 � 2
������������
jn0pj�

q
; ���s�?1 � 2

��������������
jn0pj�0

q
; (5)

and numerically ���s�k1 � 48:53 mrad, ���s�?1 �
29:35 mrad.

Entanglement.—The wave packet widths presented in
Eqs. (3) and (5) can be used to estimate the width-ratio
parameters R for k and ? geometries

 Rk �
Lk�0�p jn0pj

3=2 ����
�
p

5:568no
� 94:6; R? �

��������������
jn0pj�0

q
�

� 3:6:

(6)

Validity of the width-ratio parameters for evaluation of the
degree of entanglement has been proven for double-
Gaussian 1D bipartite wave functions [9,13]. However,
the biphoton wave function is more complicated. To check
validity of the R parameters as entanglement quantifiers we
evaluated theoretically also the EPR entanglement parame-
ter, for the k geometry defined as

 CkEPR �
4 ln�2�

���c�1 
 �k�c�1�

; (7)

where ���c�1 and �k�c�1� �
1
2 kp���c�1 are the coordinate and

momentum coincidence wave packet widths. Derivation of
explicit expressions for CkEPR will be given elsewhere [14],
but the final result appears to be identical practically to that
of Eq. (6) for Rk, and numerically CkEPR � 96 � Rk.

At the same time one should remember that the biphoton
state is two dimensional and anisotropic. This complicates
both rigorous definition and measurement of the overall
biphoton entanglement quantifier. Here we restrict our-
selves by giving the simplest estimate of such a parameter
Roverall as a product of Rk and R?. Such a definition was
shown to be correct [7] by calculating Schmidt number K
[16,17] for the isotropic 2D biphoton wave function. It was
modeled by the product of two double-Gaussian functions.
The calculated in such a way parameter K was shown to
differ only slightly from the numerically calculated one

found without modeling by Gaussian functions. Any fur-
ther generalizations for more realistic but complicated
cases are not known up to now. In any case, by using the
definition given above and Eqs. (6), we find

 Roverall � Rk 
 R? �
Lk�0�p n02p
5:568no

������
�0

�

r
� 346: (8)

This is a huge degree of entanglement achieved mainly
owing to consideration a rather long crystal with a rela-
tively large value of the refractive index angular derivative
jn0pj. Equation (8) shows that increasing the angular width
of the pump � in one direction compared to another one,
�0, does not lead to further increasing degree of entangle-
ment. At � � �0 the overall degree of entanglement ap-
pears to be independent of the pump divergency. It is
important to notice that restrictions on the pump diver-
gency �, the crystal length L and anisotropy jn0pj follow
from the validity conditions of all the derived results

 �Ljn0pj � �p; (11)

which is quite well fulfilled for parameters we consider.
Note at last that an important theoretical problem, still

awaiting its solution, is the calculation of the overall
Schmidt number K for a complete 2D anisotropic biphoton
wave function and comparison of K with Roverall (8).

Experimental setup.—The experimental setup is shown
in Fig. 4. To generate the entangled photons we use type I
and 15 mm-length lithium-iodate crystal pumped with a
5 mW cw-helium-cadmium laser operating at 325 nm with
divergency 1.5 mrad. The correlated photons generated via
SPDC process with equal polarization and wavelength
650 nm are separated from the pump by dichroic mirror.
Interference filters centered at 650 nm with a bandwidth of
10 nm are placed in each arm of Hanbury Brown-Twiss
scheme. To measure coincidence and single-photon distri-
butions in the transverse momenta we use the lens with
focal length F � 62 cm. Two single-photon detectors (D)
are positioned in focal plane of the lens. In most cases we
fix position of the first detector at the maximum of count
rate and scan another one to register both distributions as a
function of detector displacement. Its position (x) relates to
the angular mismatch (�) as x � F tan�.

Results and discussion.—The main idea behind
performed experiment is to check the formulas of

FIG. 4. Experimental setup for measuring single and coinci-
dence probability distributions.
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Eqs. (2)–(6) and, in such a way, to compare the k and ?
geometries of Fig. 1. To see how the angular distribution of
the pump effects upon biphoton angular distributions, we
have artificially and anisotropically broadened the pump
by installing a slit (S) in front of the crystal. The slit was
installed always vertically to provide angular broadening
in the horizontal direction, where the detector(s) scan,
whereas the crystal optical axis could be lying either in
the vertical or horizontal planes. The slit thickness was
70 mkm, which corresponds to the 4.1 mrad pump diver-
gency in the direction perpendicular to the slit.

The pictures of Fig. 5 and 6 show two sets of angular
distributions corresponding to both single-particle and co-
incidences measurements, which are performed for differ-
ent geometries ( ? and k ). These plots allow one to
evaluate the degree of entanglement directly from experi-
mental data by using Eq. (8). Figure 5 corresponds to the?
geometry. The width of the single-particle distribution is
25 mrad whereas the width of the coincidence one is
8.4 mrad, i.e., twice wider than the width of the pump
[in accordance with the second Eq. (3)]. The ratio
�k�s�1?=�k�c�1? � 3, which is close to the theoretical estimate
of 3.5. The results occurring for the k geometry are shown
in Fig. 6. Here the widths of single and coincidence dis-
tributions are 60 mrad and 0.75 mrad, correspondingly.
Their ratio is 80, which is much greater than in the previous
case and very close to that predicted by theory Rkk � 94:6.

The measure Roverall introduced above takes the value
240. Although it is distinctly less then the value estimated
numerically (8) we think it caused mainly by the factors
that were not considered like setup misalignment, finite
spectrum of the SPDC, etc.

To conclude, we have shown both theoretically and
experimentally that there is a possibility of creating highly
entangled biphoton states under conditions when the pump
beam has significant divergence while the nonlinear crystal
is sufficiently long and its anisotropy is taken into account.

LiIO3 appears to be one of the best crystals satisfying to
these conditions.

This work was supported in part by the Russian
Foundation for Basic Research (Projects No. 05-02-
16469 and No. 06-02-16769), the RF President’s Grant
No. MK1283.2005.2, the Leading Russian Scientific
Schools (Project No. 4586.2006.2), and by the US Army
International Technology Center—Atlantic, Grant
No. RUE1-1616-MO-06.

*ekaterina.moreva@gmail.com
[1] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777

(1935).
[2] M. H. Rubin, Phys. Rev. A 54, 5349 (1996).
[3] A. V. Burlakov et al., Phys. Rev. A 56, 3214 (1997).
[4] C. H. Monken, P. H. Souto Ribeiro, and S. Padua, Phys.

Rev. A 57, 3123 (1998).
[5] S. P. Walborn, A. N. de Oliveira, and C. H. Monken, Phys.

Rev. Lett. 90, 143601 (2003).
[6] M. D’Angelo et al., Phys. Rev. Lett. 92, 233601 (2004).
[7] C. K. Law and J. H. Eberly, Phys. Rev. Lett. 92, 127903

(2004).
[8] J. C. Howell et al., Phys. Rev. Lett. 92, 210403 (2004).
[9] M. V. Fedorov et al., J. Phys. B 39, S467 (2006).

[10] K. W. Chan, C. K. Law, and J. H. Eberly, Phys. Rev. A 68,
022110 (2003).

[11] W. P. Grice and I. A. Walmsley, Phys. Rev. A 56, 1627
(1997).

[12] Y. H. Kim and W. P. Grice, Opt. Lett. 30, 908 (2005).
[13] M. V. Fedorov et al., Phys. Rev. A 69, 052117 (2004); 72,

032110 (2005).
[14] M. V. Fedorov et al. (to be published).
[15] M. V. Fedorov et al., arXiv:quant-ph/0612104.
[16] R. Grobe, K. Rzazewski, and J. H. Eberly, J. Phys. B 27,

L503 (1994).
[17] A. Ekert and P. L. Knight, Am. J. Phys. 63, 415 (1995).

FIG. 6 (color online). Experimental results: normalized single-
particle and coincidence distributions for k geometry.

FIG. 5 (color online). Experimental results: normalized single-
particle and coincidence distributions for ? geometry.
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