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We apply the generalized second law of thermodynamics and derive upper limits on the variation in the
fundamental constants. The maximum variation in the electronic charge permitted for black holes
accreting and emitting in the present cosmic microwave background corresponds to a variation in the
fine-structure constant of ��=� � 2� 10�23 per second. This value matches the variation measured by
Webb et al. [Phys. Rev. Lett. 82, 884 (1999); Phys. Rev. Lett. 87, 091301 (2001)] using absorption lines in
the spectra of distant quasars and suggests the variation mechanism may be a coupling between the
electron and the cosmic photon background.

DOI: 10.1103/PhysRevLett.99.061301 PACS numbers: 04.70.Dy, 06.20.Jr, 97.60.Lf, 98.80.Es

Observations [1,2] of absorption in the spectra from
distant quasars raise the possibility that the fine-structure
constant �, which governs electromagnetic interactions,
may be increasing as the Universe ages. The observations
are consistent with a rate of change of roughly ��=� �
2� 10�23 per second. The fine-structure constant � �
e2=@c, where e is the charge of the electron, @ is Planck’s
constant and c is the speed of light. Davies et al. [3] have
proposed using black hole thermodynamics to limit the
variation in the electronic charge e. In this Letter, we
include the full description of the time variation of the
entropy of the black hole system. We shall see that a small
increase in e of �e=e � ��=2� � 10�23 per second does
not violate the generalized entropy law for black holes in
the present Universe. Thus black hole thermodynamical
constraints do not rule out the possibility that an increase in
� is due solely to an increase in electric charge e.
Furthermore, we will discover that de=dt � 10�23e per
second matches the maximum variation in e permitted
for black holes in the present cosmic microwave back-
ground. Throughout this Letter we assume that c, @, and
the gravitational constant G are constant and investigate
variation in e. Extension of this methodology to dependent
or independent variation in the other fundamental con-
stants is straightforward and will be presented elsewhere.

The generalized second law of thermodynamics, derived
for black hole systems, states that the net entropy of the
system cannot decrease with time [4]. Over a time interval
�t, the net generalized entropy of the system increases by

 �S � �SBH � �SR�M � 0; (1)

where �SBH and �SR�M are the change in entropy of the
black hole and of the ambient radiation and matter, respec-
tively. The entropy of a black hole is [5,6]

 SBH �
kc3

4@G
ABH; (2)

where k is the Boltzmann constant. For a charged, non-
rotating (Reissner-Nordstrøm) black hole of mass M and
charge Q in electrostatic (esu) units, the area of the black
hole is

 ABH �
4�G2

c4 �M�
��������������������������
M2 �Q2=G

q
�2: (3)

Hawking [5,6] has established that a black hole is con-
tinuously emitting quasithermal radiation with a tempera-

ture TBH � 2@G
��������������������������
M2 �Q2=G

p
=kcABH. Thus �SBH, the

full change in black hole entropy over time �t, must
include the contribution from the Hawking flux as well
as any partial change induced by a variation in the elec-
tronic charge; i.e.,

 �SBH �
dSBH

dt
�t �

kc3

4@G

�
@ABH

@t
�
@ABH

@e
de
dt

�
�t: (4)

Only the second term was considered by Davies et al. [3].
In the general case,
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where @Q=@e � Q=e (if @Q=Q � @e=e) and the subscript
H denotes Hawking radiation (or where appropriate ther-
mal accretion). Both M and Q change as the black hole
radiates. To proceed further we must consider the two cases
when the black hole temperature is greater than and less
than the temperature of its surroundings.

Case (I).–If the black hole temperature is greater than
the temperature of its surroundings, i.e., TBH > TR�M,
there will be a net radiation loss from the black hole into
its environment.

Case (IA).–Consider first the case when Q is not af-
fected by the Hawking radiation, i.e., the black hole tem-
perature is below about 100 keV, the threshold to emit the
lightest charged particle, the electron. This corresponds to
M * 1017 g. Then @QH=@t � 0 and so
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The mass loss due to Hawking radiation is [7]

 

dMH

dt
� �

@c4

G2M2 �; (7)

with � � 3� 10�4 for a hole emitting the photon, 3 light
neutrino species, and the graviton. Strictly, the mass loss
rate (7) applies only if Q� Qmax � G1=2M, the maximal
possible charge on a black hole. This will suffice for our
purpose because, as described below, high Q is discharged
quickly provided that M & @ce=G3=2m2

e � 105M�, where
me is the electron mass [8–11]. Page [12] has numerically
calculated that for a black hole emitting the photon, 3 light
neutrino species, and the graviton the increase in SR�M due
to Hawking emission is 1.62 times the corresponding
decrease in SBH due to Hawking emission. Thus �S � 0
provided the second term within the fg brackets in Eq. (6) is
not of order the first term. The second term is only of the
order of the first term when the black hole has a charge of

 Q1�2 �

�
@c4�

GM�e�1de=dt�

�
1=2
�

2�
@c4�

G2M3�e�1de=dt�

�
1=2
:

(8)

If de=dt � 10�23e per second, then Q1�2 & Qmax for
M * 1:8� 1016 g and so Q1�2 could be achievable.
However, Gibbons [9] and Zaumen [10] have shown that
if the charge is greater than QPP � G2m2

eM2=@ce, the
black hole will quickly discharge by superradiant [13,14]
Schwinger-type e�e� pair production in the electrostatic
field surrounding the hole. From Eq. (5a) this Schwinger-
type discharge will increase @ABH=@t and hence SBH, as
well as SR�M. The superradiant threshold QPP is less than
Q1�2 for all holes lighter than

 MPP �

�
2@3c6e2�

G5m4
e�e
�1de=dt�

�
1=5
; (9)

i.e., MPP � 2:6� 1025 g for de=dt � 10�23e per second.
Gibbons [9] has derived the discharge rate for TBH �

100 keV black holes with Q>QPP to be dQPP=dt �

�e4Q3=@3c2r�� exp���c3m2
er2
�=@Qe�, where r� �

G�M�
��������������������������
M2 �Q2=G

p
�=c2. Thus the pair-production dis-

charge term �Q=G�dQPP=dt from a Q1�2 black hole is
greater than the entropy decrease term �Q=G��
�@Q=@e�de=dt in Eq. (6) for all M & MPP�E where
MPP�E satisfies
 

c4e4�

@
2G2M2�e�1de=dt�2

� exp
�
4�G5=2m2

eM5=2�e�1de=dt�1=2���
2
p

@
3=2c3e�1=2

�
; (10)

i.e., MPP�E � 7:0� 1025 g for de=dt � 10�23e per sec-
ond. Because the pair-production term grows much faster
with Q than the de=dt term, the pair-production term then
dominates when Q1�2 & Q for M & MPP�E. To the accu-
racy of our analysis and the original references (which
together may be roughly a factor of 2) and the measure-
ments of ��=�, our estimate of MPP;PP�E � �2:6–7:0� �
1025 g for de=dt � 10�23e per second coincides with
MCMB � 4:5� 1025 g, the mass of a black hole whose
temperature is equal to the ambient temperature of the
Universe T � 2:73 K.

Thus in case (IA), the net increase in SBH � SR�M due to
Hawking emission and pair production is greater than the
decrease in SBH induced by an electronic charge change of
de=dt � 10�23e per second for all neutral and charged
black holes whose temperature is greater than the 2.73 K
cosmic microwave background.

Case (IB).–Consider the case when the black hole is
emitting charged particles via Hawking emission, i.e.,
@QH=@t � 0 and M & 1017 g. A charged black hole emits
its charge at a rate which depends on Q and preferentially
emits particles of the same sign as its own charge. Then
@QH=@t � ��ejQj=Q�dNH=dt, where edNH=dt is the net
emission rate of charge out of the black hole. If Eav �
5TBH is the average energy of a particle emitted by
the black hole [7] and dNtot=dt is the total emission rate
of all particles from the black hole, then dMH=dt �
��Eav=c

2�dNtot=dt � 0 and jQ@QH=@tj �
�c2e=Eav�jQdMH=dtj. Thus dSBH�IB�=dt lies in the range
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For Q� Qmax it is straightforward to show that the net
entropy increase due to the Hawking emission, given by
Eq. (7) with � � 4� 10�4 for M & 1017 g [15], domi-
nates the entropy decrease due to de=dt � 10�23e per
second. For higher Q, the relevant Hawking emission
rate per degree of particle freedom of spin s particles
with energy in the range (E;E� dE) is

 d _N �
�sdE
2�@

�
exp

�
E� c2eQ=GM

kTBH

�
� ��1�2s

�
�1
; (12)

where �s is the spin- and charge-dependent absorption
probability. As Q increases, the emission rate is modified
by the electrostatic chemical potential term in Eq. (12).
Carter [11] has estimated that dQe=dt � �c2e2Q=@GM
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for M & 1017 g and Q � @c=e (the thermal regime), and
dQe=dt � �e

4Q3=@3GM for Q � @c=e (the superradiant
regime) which matches the superradiant discharge rate for
larger M. In both cases the entropy increase due to the
dQe=dt term dominates the entropy decrease due to
de=dt � 10�23e per second for all M & 1017 g. [We also
note that the discharge time scale �Q � Q= _Qe for a M &

1017 g hole is much smaller than its lifetime �BH �
G2M2=@c4 and is even comparable with or less than
@c=e2 � 137 times the characteristic time scale it takes
to form �F � r�=c [11], soM & 1017 g black holes should
be essentially neutral today [8,9], up to random fluctua-
tions of order the Planck charge �@c�1=2.] Thus for all
neutral and charged black holes in case (IB), there is a
net increase in SBH � SR�M if de=dt � 10�23e per second.

Case (II).–If the black hole temperature is less than or
equal to the temperature of its surroundings, i.e., TBH �
TR�M, the net entropy also increases when e increases at
the rate indicated by the Webb et al. observations [1]. This
can be shown by explicitly deriving the heat flow into the
hole or by general thermodynamical principles as follows.

An increase in e will decrease ABH and TBH. Once TBH

drops below the ambient temperature, the black hole will
accrete from its surroundings faster than it Hawking radi-
ates. This accretion increases the black hole mass M,
further lowering TBH, and leads in turn to more accretion.
(As Hawking has pointed out [16], a black hole cannot be
in stable thermal equilibrium if an unbounded amount of
energy is available in its surroundings. This also means that
the Davies et al. [3] suggestion that a black hole can be
kept in isoentropic equilibrium with a same temperature
heat bath is not achievable.) The general thermodynamical
definitions of the temperature of the environment and the
black hole temperature are, respectively, [16]

 T�1
R�M �

@SR�M
@E

; T�1
BH � c�2

�
@SBH

@M

�
Q fixed

; (13)

where E is the energy of the environment. During accre-
tion, the black hole mass increases by an amount equal to
the decrease in E. Hence for TBH � TR�M, the temperature
definitions imply that the increase in black hole entropy
due to accretion must be greater than the decrease in SR�M
due to accretion. Also for TBH � TR�M, the increase in
SBH due to accretion must be greater than the decrease in
SBH due to Hawking radiation. In analogy with a
classical blackbody, a cold large black hole in a warm
thermal bath will absorb energy at a rate dE=dt �
�2k4�ST

4
R�M=60@3c2 (and emit radiation dE=dt �

�2k4�ST4
BH=60@3c2) per polarization or helicity eigenstate

where �S � 27�G2M2=c4 is the geometrical optics cross
section [7]. (Since the entropy of the background is maxi-
mized for a thermal bath, a thermal bath will give the
strictest accretion constraint on �S.) For accretion,
Eq. (7) is thus replaced by

 

dM
dt
� �

�R�M@c
4

G2M2
R�M

�
M

MR�M

�
2
; (14)

where�R�M � 10�4 andMR�M is the mass of a black hole
whose temperature equals the ambient temperature. The
de=dt term in Eq. (6) is now of the order of the first
(absorption) term only when
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@c4�R�M

GMR�M�e�1de=dt�

�
1=2
�

M
MR�M

�
3=2

�

�
2�

@c4�R�M
G2MR�MM

2�e�1de=dt�

�
1=2
: (15)

ProvidedM & 5� 1020 �MR�M=MCMB�
4M�, thenQmax &

Q01�2 for de=dt � 10�23e per second. Gibbons [9] has
argued that large black holes should not acquire significant
charge or approach Qmax. Once Q=G1=2M>G1=2me=e �
5� 10�22, a black hole can only gravitationally accrete a
particle of like charge if the particle is projected at the
black hole with an initial velocity [9], and a large black
hole would be more likely to lose charge by accreting a
particle of opposite charge. More rigorously, the general-
ized third law of thermodynamics states that TBH � 0, and
hence Qmax, is not achievable by a finite sequence of steps
[12,17]. Thus the black hole charge will remain below
Qmax and the accretion from the radiation background,
which depends on T4

R�M, will always dominate the de=dt
term. Addressing M * 5� 1020�MR�M=MCMB�

4M�, such
supermassive black holes cannot exist in the present
Universe. Such a black hole would have a Schwarzschild
radius of 25–50 Mpc, which is at least 1% of the current
cosmic horizon, and would be at least 10 orders of magni-
tude more massive than an active galactic nuclei core.
Additionally, a black hole can only form when the size of
the Universe is greater than the Schwarzschild radius of the
hole, and any black hole should produce noticeable dis-
tortion in its surrounding space-time out to at least about
10 times its Schwarzschild radius. No distortion on the
scale of 1%–10% of the cosmic horizon is observed today.
Stated another way, the existence of such supermassive
black holes is ruled out by the present age and structure of
the Universe. However, even if such a supermassive black
hole did exist it would presumably also discharge quickly
by charge accretion from its environment. ThusQ01�2 is not
attainable by any black hole in the present Universe, and
even in the ultramassive limit �S � 0 is not violated.

In the special case when TR�M � TBH � TCMB, �S due
to absorption again must be greater than �S due to emis-
sion and, as we have shown in case (I), �S due to emission
is greater than or equal to the decrease in entropy due to
de=dt � 10�23e per second for TBH � TCMB. Hence for all
TBH � TR�M, an increase in e of the size indicated by the
Webb et al. data [1] must produce a net increase in the
generalized entropy, i.e., �SBH ��SR�M � 0 for all black
holes with a net absorption.

Combining cases (IA), (IB) and (II), we conclude that if
the electronic charge e increases at a rate consistent with
the Webb et al. observations, the generalized second law of
thermodynamics is not violated by black holes in the
present Universe. In fact, our analysis shows that a change
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in the fine-structure constant of ��=� � 2� 10�23 per
second corresponds to the maximum increase in e allowed
by the generalized second law of thermodynamics for
black holes in the present Universe. The second law could
be violated by emitting black holes if the Universe were
only somewhat colder than today.

Extending our analysis to rotating black holes is
straightforward and does not modify our conclusions.
For a rotating, charged (Kerr-Newman) black hole, the

M�
��������������������������
M2 �Q2=G

p
factor is replaced by M���������������������������������������������������������

M2 �Q2=G� c2J2=G2M2
p

. The maximal rotation is

Jmax � GM2
����������������������������
1�Q2=GM2

p
=c and Jmax � GM2=c unless

Q is very close to Qmax � G1=2M, in which case the above
treatment ofQmax should be followed. Page [12] has shown
that from J � 0 to J � GM2=c, the power of a black hole
emitting 4 spin-1=2 (3 neutrino species and electrons), 1
spin-1 (photon) and 1 spin-2 (graviton) species increases
by a factor of 300, and the black hole loses spin faster than
it loses energy. In the case of a J � GM2=c or J � GM2=c
black hole, the superradiant mechanism for bosonic and
fermionic modes dominates [12–14]. By the superradiant
mechanism, which we discussed above for charged fermi-
onic modes, a particle-antiparticle pair is created in the
ergosphere with one particle with positive energy escaping
to infinity and the other particle with locally positive
energy being absorbed by the black hole. This mechanism
has the consequence of increasing both the entropy of the
environment and the entropy of the black hole, and spin-
ning down the extremal black hole. In the case of a non-
extremal black hole, the generalized third law of
thermodynamics can also be applied to show that an exist-
ing black hole cannot be spun up to Jmax. Therefore the
strictest constraints we obtain by including the de=dt term
in the generalized second law of thermodynamics come
from black holes with J � 0 and charge Q> 0. Our con-
clusions are also not affected by the changes due to de=dt
in the Hawking and pair-production discharge rates which
are second order effects.

It should be noted that our derivation is essentially
standard model physics and does not invoke quantum
gravity. The black hole entropy and temperature, as de-
fined, are required for classical general relativity to be
consistent with classical thermodynamics [16,18,19].
Additionally, the superradiant mechanism was first de-
scribed by Zel’dovich [13,14] for classical black holes
prior to the discovery of Hawking radiation. Schwinger
pair production [20] is a nonperturbative process in stan-
dard QED.

If the Webb et al. measurements [1] are correct, our
analysis suggests at least two possibilities. We postulate
that nature is such that e varies at the maximal rate allowed
by the generalized second law of thermodynamics. If this is
so, then, as seen in Eqs. (9) and (10), the rate of increase in
� should weaken with time as the Universe cools and
MCMB increases. This postulate could be expanded if the
increase in � is due not solely to e varying, but to e, @, c,

and/or G varying dependently as proposed in some stan-
dard model extensions, to say that the combined variation
occurs at the maximal rate allowed by the generalized
second law of thermodynamics. The maximal variation
postulate should be explored theoretically and
experimentally.

Additionally, the form of our results strongly suggests
that, if the Webb et al. measurements [1] are correct, the
increase in � may be due to a higher order coupling
between the electron charge and the cosmic photon back-
ground whose effect is to partially screen the bare electron
charge. As the Universe cools, the coupling weakens,
increasing e. Although we have derived our result by
applying the generalized second law of thermodynamics
to black holes, in doing so we may have mathematically
mimicked the relevant cosmological calculation or, rather,
derived it from a principle instead of the explicit details of
the mechanism: since the photon background is cosmo-
logical in origin, its temperature implicitly depends on G.
It should be investigated whether such a coupling arises as
a higher order effect in standard QED or in standard model
extensions. Because our strongest black hole constraint
comes from the Schwinger pair-production regime, an
obvious candidate mechanism to consider is the scattering
of the vacuum polarization e�e� around a bare electron off
the cosmic photon background.

It is a pleasure to thank the University of Cambridge for
hospitality.
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