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We examine the structure of the distribution of single particle displacements (van Hove function) in a
broad class of materials close to glass and jamming transitions. In a wide time window comprising
structural relaxation, van Hove functions reflect the coexistence of slow and fast particles (dynamic
heterogeneity). The tails of the distributions exhibit exponential, rather than Gaussian, decay. We argue
that this behavior is universal in glassy materials and should be considered the analog, in space, of the
stretched exponential decay of time correlation functions. We introduce a dynamical model that describes
quantitatively numerical and experimental data in supercooled liquids, colloidal hard spheres, and
granular materials. The tails of the distributions directly explain the decoupling between translational
diffusion and structural relaxation observed in glassy materials.
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The slow dynamics of disordered materials close to glass
and jamming transitions is characterized by just a few
universal features [1]: dramatic dynamical changes upon
mild changes of control parameters (temperature, density),
broad distribution of relaxation times leading to stretched
exponential decay of time correlation functions, and spa-
tially heterogeneous dynamics [2]. Here we argue that the
detailed structure of the distribution of particle displace-
ments (van Hove function [3]) constitutes an additional
universal signature of glassy dynamics. We show that, for
time scales corresponding to structural relaxation, the self-
part of the van Hove function has broad tails that are well
described by an exponential, rather than a Gaussian, decay.
We provide a broad range of numerical and experimental
data, physical arguments, and a dynamical model to sup-
port this claim.

The non-Fickian character of single particle displace-
ments in materials with glassy dynamics is well known [4–
12]: time correlation functions decay nonexponentially,
mean-squared displacements exhibit at intermediate time
scales a subdiffusive plateau, van Hove distributions are
non-Gaussian. This affects transport properties since trans-
lational diffusion is decoupled from structural relaxation
[13], leading to an anomalous relation between time scales
and length scales [14]. Virtually all glass theories address
the stretched decay of correlation functions, but compara-
tively much less attention has been paid to the detailed
shape of the self-part of the van Hove function [11,12,15–
18], although new techniques now directly access this
quantity in different materials [4–7]. Its non-Gaussian,
‘‘heterogeneous’’ character is often discussed in qualitative
terms [16,17], and quantitative measures focus on the
distribution kurtosis (non-Gaussian parameter [9]) which
contains, however, very indirect information about its
shape. Deviations from Gaussian behavior are usually
ascribed to dynamic heterogeneity [2], i.e., to the presence
of particles that are substantially faster or slower than the

average. We argue that van Hove functions contain quan-
titatively relevant information about the relaxation of
glassy materials, and that its functional form is simple
and universal, just as the stretched exponential decay of
time correlation functions. Glass theories should therefore
treat both phenomena on an equal footing.

We present our central observations in Figs. 1 and 2,
which show the self-part of the van Hove functions for a
silica melt [19], a binary Lennard-Jones (LJ) mixture [20],

FIG. 1. Time evolution of the self-part of van Hove functions
for silicon atoms in silica, Lennard-Jones particles, hard-sphere
colloids, and grains (open circles), fitted with the model in
Eq. (2) (full lines). They exhibit a Gaussian central part and a
broad, exponential tail. (a) T � 3000 K and t 2 �27; 1650� ps.
(b) T � 0:435 and t 2 �75� 103; 41� 106�. (c) ’ � 0:517 and
t 2 �90; 1008� s. (d) ’ � 0:84 and t 2 �10; 1000� cycles. (a) and
(b) show the distributions of jr�t� � r�0�j, (c) and (d) the dis-
tributions of x�t� � x�0�.
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a dense suspension of colloidal hard spheres [4], and a
slowly driven dense granular assembly [5]. It reads [3]

 Gs�r; t� � h��r� jri�t� � ri�0�j�i; (1)

where ri�t� denotes the position of a particle i (molecule,
colloid, grain) at time t, the brackets indicate an ensemble
average. For technical reasons, experiments sometimes
record the one-dimensional version of (1), Gs�x; t� �
h��x� jxi�t� � xi�0�j�i, where xi�t� is the projection of
ri�t� on a given unit vector. For our purposes, the difference
between the two functions is irrelevant. For all systems we
find that Gs�r; t� has the same structure over a broad time
window comprising the structural relaxation. Most of its
statistical weight is carried by particles that have barely
moved, r < �, but a ‘‘broad’’ tail extends to much larger
distances, r > �, where � is the particle diameter. The
small r behavior is not far from a Gaussian distribution,
corresponding to quasiharmonic vibrations, but the large
distance decay appears linear in Fig. 1, i.e., Gs /
exp��r=��t��. For a Fickian particle, one expects instead
a Gaussian decay, Gs / exp��r2=�4Dst��, where Ds is the
self-diffusion constant. Although the existence of a broad
tail in Gs�r; t� was recognized before [4–8,12,15–17,21],
its nontrivial functional form and universality went largely
unnoticed.

The exponential tail extends to larger distances when t
increases, but ��t� grows very slowly with t. Eventually, at
very large times, a crossover to Fickian behavior is ob-
served, see the latest time in Fig. 1(b). For the LJ system
the crossover takes place for t � 30�� [21], where ���T� is
defined from the time decay of the self-intermediate scat-
tering function, Fs�q; t�, the Fourier transform of Gs�r; t�.
Our observations correspond to times that are shorter than
this crossover. In Fig. 2, we present the evolution ofGs�r; t�
when the glass transition is approached, keeping t fixed to
���T�. Clearly the shape of Gs�r; t� remains unchanged,
but the tail becomes more pronounced closer to the glass
transition.

These observations confirm that van Hove functions can
be qualitatively described as the superposition of two
families of particles: localized particles contributing to
the Gaussian central part and mobile particles contributing
to the exponential tail. Evidence has recently been given
that the distinction between mobile and immobile particles
cannot be explained on a structural basis [22]. We therefore
seek a purely dynamical explanation. In Fig. 3 we present
representative trajectories of duration �� for mobile and
immobile particles in the LJ system. Similar pictures have
been presented before [4,5]. A large fraction of the parti-
cles perform localized, vibrational motion around their
initial positions, as in a disordered solid. These ‘‘slow’’
particles are ‘‘caged’’ by their neighbors and contribute to
the quasi-Gaussian central part of Gs�r; t�.

More interesting is the behavior of the particles contrib-
uting to the tail. On top of the localized vibrations, these
particles perform a (distributed) number of quasi-
instantaneous ‘‘jumps.’’ This suggests that particles per-
form a form of continuous time random walk (CTRW [23])
[11,15,18,24,25]. From direct inspection of the trajectories
we note that the size of the jumps is distributed, and
represents on average only a small fraction of the particle
size, implying that jumps probably result from cooperative
events involving a large number of particles moving by a
small amount [26]. Regarding time scales, trajectories also
reveal that the time of the first jump after t � 0 is distrib-
uted. This observation directly implies that van Hove func-
tions can be described, for t > 0, as a superposition
between particles that have jumped, and those that have
not [15]. We insist [10,22] that this coexistence is dynami-
cally generated and we will avoid the assumption of a
material being composed of two dynamically distinct fam-
ilies of particles [18,27].

The final empirical observation from Fig. 3 is that once a
particle has managed to make a jump, it very likely makes
one or several additional jumps during the rest of our
observation time. We believe that this results from dynamic
heterogeneity. Spatial clustering of particles with corre-
lated dynamics implies indeed that it takes a very long time

FIG. 3. Four trajectories of duration �� for particles contrib-
uting to the center of the distribution (slow) and to the tail
(‘‘tail’’) taken from simulations of the LJ liquid at T � 0:435
(‘‘LJ’’) and for random walkers described by (2).

FIG. 2. Temperature evolution of the self-part of the van Hove
function for t � �� for oxygen atoms in silica at T � 3580,
3200, 3000, and 2715 K (from left to right) and Lennard-Jones
particles at T � 0:5, 0.47, 0.45, and 0.435 (from left to right).
The exponential tail gets more pronounced at low temperatures.
This trend is smaller in silica than for Lennard-Jones, as is the
translational decoupling.
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for a particle belonging to a slow region to become mobile.
But when this happens, the particle then likely belongs to a
mobile region, which enhances considerably its probability
to move further. Widely different time scales for initial and
subsequent moves naturally arise, for the reason mentioned
above, in kinetically constrained models [15,28], and origi-
nate from the existence of a broad distribution of waiting
times between the moves [28,29]. This is likely a generic
consequence of spatially heterogeneous dynamics.

We now introduce a model, inspired by Refs. [15,28],
which incorporates these observations with as few free
parameters as possible. The system is viewed as an assem-
bly of dynamically indistinguishable particles, compatible
with structural homogeneity. We assume solid behavior at
short times. In between jumps, particles perform on a
microscopic time scale a Gaussian exploration of their
environment with the distribution fvib�r� � �2�‘2��3=2�
exp��r2=2‘2�. We assume that particles perform jumps
with a size sampled from fjump�r� � �2�d

2��3=2�

exp��r2=2d2�. We similarly assume simple forms for
time distributions. The time of the first jump is drawn
from �1�t� � ��1

1 exp��t=�1�. We then assume that sub-
sequent jumps arise with higher frequency, using the dis-
tribution �2�t� � ��1

2 exp��t=�2�, with �2 < �1. It is now
a simple task [23] to express the van Hove function,
Gs�r; t� �

P
1
n�0 p�n; t�f�n; r�, where p�n; t� is the proba-

bility to make n jumps in a time t, and f�n; r� the proba-
bility to move a distance r in n jumps. These probabilities
involve convolutions and are more easily expressed in the
Fourier-Laplace domain, �r; t� ! �q; s�. We obtain

 Gs�q; s� � fvib�q��1�s� 	 f�q�fvib�q�
�1�s��2�s�

1��2�s�f�q�
;

(2)

where �1;2�s� 
 1� s�1;2�s� and f�q� 
 fvib�q�fjump�q�.
The Montroll-Weiss equation [23] is recovered when�1 �
�2 and vibrations are not considered, fvib�q� � 1. The
result in Eq. (2) is valid for any choice of distributions
(fvib, fjump, �1, �2). Here, we restrict to simple choices
(Gaussian and exponential distributions) to emphasize the
universality and physical origin of our results and to in-
troduce as few free fitting parameters as possible: (‘, d, �1,
�2). Equation (2) makes very transparent the fact that Gs is
the superposition of localized particles, and mobile parti-
cles. We show below that the second term produces a tail
that is close to exponential and arises from particles which
have performed one or several jumps.

For the four systems considered in Fig. 1 we have used
Eq. (2) to fit the self-part of the van Hove functions, as
shown with full lines. The fits evidently match the data
very well. In practice, we sought the set of parameters that
allows for data fitting on the largest time window compris-
ing structural relaxation. We find that fitting several times
fixes the set of parameters with little ambiguity, while
multiple choices remain possible when fitting data for a

single t. In Fig. 3 we present numerically generated tra-
jectories of the generalized CTRW model of (2) using the
parameters used to fit the LJ data, leaving us with no doubt
that such a model captures the main qualitative aspects of
the real trajectories. As expected, we find that both cage
and jump sizes represent only a fraction of the particle size,
and are very weakly dependent on the control parameters.
As a rule of thumb we find d � 2‘. For instance (d=�,
‘=�) is (0.1, 0.051) in colloids, (0.15, 0.06) in grains, and
(0.35, 0.15) in the Lennard-Jones. Moreover, our results for
d2 agree well with plateau values directly measured in
mean-squared displacements for all systems.

These results imply that the changes observed in Fig. 2
are mostly due to a change in the balance between �1 and
�2. We naturally find that, in a first approximation, both
times track the structural relaxation of the system. More
interesting is the evolution of their ratio � � �1=�2, re-
ported in Fig. 4. Unfortunately, we had not enough data for
grains and colloids to report accurate estimates of � in
these systems and thus we concentrate on the two numeri-
cal models. In order to account for the increasingly broad
tails reported in Fig. 2, � has to grow significantly when
temperature decreases, as expected from the above discus-
sion. The growth of � directly impacts on transport prop-
erties [15,28]. Within the model (2) the time decay of
Fs�q; t� at large q (small distance) is governed by �1�t�,
so that �� � �1. Fickian diffusion is recovered when the
average number of jumps becomes large. It is easy to show
from the q; s! 0 limit of (2) that Ds � �‘

2 	 d2�=�2, so
that the product between self-diffusion constant and struc-
tural relaxation time scales asDs�� � �. Our model there-
fore makes a direct prediction about translational
decoupling [15,28]. We have measured the normalized
product, Rdec�T� � Ds�T����T�=Ds�T0����T0� (where T0

is a high temperature) for Lennard-Jones, silicon, and oxy-
gen atoms directly in numerical simulations; see Fig. 4.
This ratio is Rdec � 1 at high temperatures, and becomes

FIG. 4. Comparison of the amount of translational decoupling
in silica and LJ systems measured in molecular dynamics
simulations through Rdec (open symbols), and of the ratio � �
t1=t2 (filled symbols) employed to fit the data with the model (2).
The agreement is excellent.
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Rdec > 1 whenever translational decoupling occurs [14].
For three types of particles with different degrees of de-
coupling, we find quantitative agreement between � ob-
tained from fits of the self-part of the van Hove function
and the decoupling Rdec directly measured in the simula-
tions. Thus, Fig. 4 provides a quantitative link between
dynamic heterogeneity and decoupling, and supports the
present modeling of self-diffusion close to a glass transi-
tion [15,28].

Why are the tails of the distributions described by an
exponential decay? Non-Gaussian decay is in fact present
in the original CTRW model when distances outside the
realm of the central limit theorem are considered. These
tails are enhanced, and hence more easily detectable, when
�> 1 and decoupling occurs. Consider the case � � 1,
‘ � 0 in Eq. (2). Inverting the Laplace transform yields

 Gs�r; t� � G0 	
4�e��t

r

Z 1
0
dq�e�tf�q� � 1�q sin�qr�; (3)

where G0�r; t� 
 ��r��1�t� and �t 
 t=�1. We then expand
the exponential in (3), integrate each term, and convert the
sum into an integral to get

 Gs�r; t� � G0�r; t� 	
�e��t

4d3

Z 1
1
dn
e�f�n�

n2 ; (4)

with f�n� � n lnn� n ln�t� n	 r2=�8d2n�. The large dis-
tance limit of (4) is evaluated using a saddle point approxi-
mation,

 Gs�r; t� �
��Y�3=2e��t

�rd�3=2
���������������
1	 Y2
p e�r�Y�1=Y�=2d; (5)

where Y satisfies Y2 expY2 � r2=�2d�t�2; Y2 � 2 log� r2d�t� for
large r. Thus, we find that Gs�r; t� decays exponentially
(with logarithmic corrections) at large r. Interestingly, this
expansion can be obtained independently of the actual
shape of the distributions, establishing its universality.
Considering that the tail of Gs stems from particles that
have performed a number of jumps larger than average,
one finds p�n; t� � ��t=n�n and f�n; r� � e�r

2=�8d2n�, yield-
ing an expression similar to (5).

We have reported the existence of a new universal
feature characterizing the dynamics of materials close to
glass and jamming transitions, seen in the structure of the
distribution of single particle displacements which exhibits
exponential decay at large distances. We argued it is a
generic consequence of the existence of spatially hetero-
geneous dynamics, which has profound consequences on
transport properties. Our results apply to a wide variety of
materials from atomic liquids [1] to biophysical materials
[6] and grains [5]. We strongly encourage more systematic
experimental exploration of particle displacements in
amorphous materials with slow dynamics.
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