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We explore fluctuation-induced switching in parametrically driven micromechanical torsional oscil-
lators. The oscillators possess one, two, or three stable attractors depending on the modulation frequency.
Noise induces transitions between the coexisting attractors. Near the bifurcation points, the activation
barriers are found to have a power law dependence on frequency detuning with critical exponents that are
in agreement with predicted universal scaling relationships. At large detuning, we observe a crossover to a
different power law dependence with an exponent that is device specific.
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Fluctuation-induced escape from a metastable state
plays an important role in many physical and biological
phenomena. As shown in Kramers’ early work for systems
in thermal equilibrium [1], the rate of escape depends
exponentially on the ratio of an activation energy to the
temperature. Activated transitions have been studied in
depth for systems in thermal equilibrium. Recently, there
has been a lot of interest in activated transitions in systems
that are far from equilibrium. A number of systems, such as
electrons in Penning traps [2], Josephson junctions [3],
micro and nanomechanical oscillators [4–6], and atoms
in magneto-optical traps [7,8], develop multistability under
sufficiently strong periodic driving, but are monostable
otherwise. These systems are not characterized by free
energy and the transition rate must be calculated from
system dynamics [9–12].

In both equilibrium and nonequilibrium systems, as a
system parameter � approaches a bifurcation value�b, the
activation barrier decreases to zero and the number of
stable states of the system changes. In general, the activa-
tion barrier is determined by the device parameters and
depends on the specifics of the system under study.
However, at parameter values close to the bifurcation
point, the activation barrier is expected to exhibit universal
scaling. The activation barrier varies as kj���bj

� with a
critical exponent � that is system independent. While the
prefactor k might be different for each system, � is univer-
sal for all systems and depends only on the type of bifur-
cation [9]. For instance, in a Duffing oscillator resonantly
driven into bistability, spinodal bifurcations occur at the
boundaries of the bistable region. One stable state merges
with the unstable state while the other stable state remains
far away in phase space. Recent experiments in micro-
mechanical oscillators [5] and rf-driven Josephson junc-
tions [13] have confirmed the theoretical prediction [9,14]
that the activation barrier scales with critical exponent 3=2
near spinodal bifurcations in driven systems. On the other
hand, a different critical exponent of 2 is expected at a
pitchfork bifurcation in systems where all three states

merge [15]. Such bifurcation commonly takes place in
parametrically driven systems where period doubling oc-
curs. For instance, fluctuation-induced phase slips were
observed in parametrically driven electrons in Penning
traps [2] between two coexisting attractors, and transitions
between three attractors were studied in modulated
magneto-optical traps [7]. To our knowledge, the activation
barriers have not been measured over a wide enough
parameter range in these parametrically driven systems to
demonstrate the universal scaling at driving frequencies
near the two critical points and the crossover to system-
specific dependence at large frequency detuning.

In this Letter, we report measurements of the activation
barrier for fluctuation-induced switching in parametrically
driven micromechanical torsional oscillators, a system that
is far from thermal equilibrium. The spring constant of our
device is modulated electrostatically near twice the natural
frequency. Under sufficiently strong parametric modula-
tion, two pitchfork bifurcation points exist. At the super-
critical bifurcation, there emerge two stable oscillation
states that differ in phase by �. At the subcritical bifurca-
tion, an additional stable state with zero oscillation ampli-
tude appears. Noise induces transitions between the
coexisting attractors. By measuring the rate of random
transitions as a function of noise intensity, we deduce the
activation barrier for switching out of each attractor as a
function of frequency detuning. Near both bifurcation
points, the activation barriers are found to depend on
frequency detuning with a critical exponent of 2, consistent
with the predicted universal scaling in parametrically
driven systems [15]. Away from the immediate vicinity
of the bifurcation point, universal scaling relationships for
the activation barrier no longer hold. We find that in our
parametric oscillator, the dependence of the activation
barrier on frequency detuning changes from quadratic to
3=2th power.

The micromechanical torsional oscillators in our experi-
ment consist of movable polycrystalline silicon plates
(500 �m� 500 �m) suspended by torsional springs, as

PRL 99, 060601 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
10 AUGUST 2007

0031-9007=07=99(6)=060601(4) 060601-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.99.060601


shown in the schematic in the inset of Fig. 1. Two elec-
trodes are located underneath the top plate. A periodic
driving voltage Vd � Vdc � Vac cos!t is applied to one
of the electrodes, where the driving frequency ! � 2!0 �
� is close to twice the natural frequency !0

(20 581:7 rad s�1 and 28 414:3 rad s�1 for samples A and
B, respectively). The top plate is therefore subjected to a
periodic electrostatic torque, the angular gradient of which
modulates the spring constant. The equation of motion is
given by:

 

��� 2� _��
�
!2

0 �
ke
I

cos!t
�
�� ��2 � ��3 � 0; (1)

where ke � �C00��0�VdcVac is the amplitude of spring
modulation, C00��0� is the second derivative of the capaci-
tance between the driving electrode and the top plate with
respect to � evaluated at the equilibrium angular position
�0, � is the damping constant, I is the moment of inertia, �
and � are the nonlinear coefficients. Torsional oscillations
of the top plate are detected capacitively by the other
electrode. All measurements were performed at 77 K and
<10�6 torr. The Q of the oscillators are sufficiently high
( � 7500) so that the response of the oscillator at !� 2!0

is negligible. Details of the oscillators can be found in
Ref. [16].

When the amplitude of the spring modulation exceeds a
threshold value kT � 4!0�I, period doubling occurs in the
oscillator response [17]. Oscillations are induced at half the
modulation frequency in a range close to !0. As shown in
Fig. 1, there are three ranges of frequencies with different
numbers of stable attractors, separated by a
supercritical bifurcation point!b1 � 2!0 �!p and a sub-

critical bifurcation point !b2 � 2!0 �!p, where !p �����������������
k2
e � k

2
T

q
=2I!0. In the first region (!>!b1 �

41 174 rad s�1), no oscillations take place, as the only
stable attractor is a zero-amplitude state. At !b1, there

emerge two stable states of oscillations at frequency !=2
that differ in phase by � but are otherwise identical,
because of the symmetry with respect to a translation in
time by 2�=!. These two stable states are separated in
phase space by an unstable state with zero oscillation
amplitude (dashed line in Fig. 1). At frequencies below
!b2 (� 41 150 rad s�1), the zero-amplitude state becomes
stable, resulting in the coexistence of three stable attrac-
tors. These stable states are separated in phase space by
two unstable states indicated by the dashed line in Fig. 1.

The presence of noise allows the oscillator to occasion-
ally overcome the activation barrier and switch between
the different attractors. Since the parametrically driven
oscillator is far from equilibrium and is not characterized
by free energy, the transition rate cannot be determined
from the height of a free energy barrier. Theoretical analy-
sis indicates that the transitions remain activated in nature
[9]:

 � / e�R=IN ; (2)

where � is the transition rate and IN is the noise intensity.
In general, the activation barrier R is determined by the
device parameters such as the damping constant, nonline-
arity coefficients, and the driving frequency. Near the
bifurcation points, the system dynamics is characterized
by an overdamped soft mode and R decreases to zero
according to j!�!bj

�, where the critical exponent � is
universal and depends only on the type of bifurcation. In a
parametric oscillator, the supercritical and subcritical bi-
furcations involve the merging of two stable oscillation
states and an unstable zero-amplitude state (at!b1) and the
merging of two unstable states and a zero-amplitude stable
state (at !b2), respectively. When three states merge to-
gether in such pitchfork bifurcations, the critical exponent
is predicted to be 2 [15]. Away from the bifurcation points,
the scaling relationship no longer holds and different ex-
ponents were obtained depending on the nonlinearity and
damping of the system.

In order to investigate the transitions between stable
states in our parametric oscillator, we inject noise with a
bandwidth of 600 rad s�1 centered at !0. Figures 2(a) and
2(c) show, respectively, the oscillation amplitude and phase
at a driving frequency in the range of two coexisting
attractors. Transitions can be identified when the phase
slips by �. The two oscillation states have the same am-
plitude. These two attractors can also be clearly identified
in the occupation histograms in Figs. 3(a) and 3(b).
Figures 2(b) and 2(d) show switching events at a driving
frequency with three attractors, where the zero-amplitude
state has also become stable. In contrast to Fig. 2(a), the
oscillator switches between two distinct amplitudes. At
high amplitude, the phase takes on either one of two values
that differ by �. When the oscillator is in the zero-
amplitude state, there are large fluctuations of the phase
as a function of time. The coexistence of three attractors in
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FIG. 1. Response of sample A at !=2 vs the frequency of
parametric driving !. The solid and dashed lines represent the
stable attractors and the unstable oscillation states, respectively.
Inset: cross-sectional schematic of the device (not to scale).
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phase space is also illustrated in Figs. 3(c) and 3(d) for two
other driving frequencies.

We identify the residence time in each state before a
transition occurs and plot the results as a histogram for one
of the oscillation states [Fig. 4(a)]. The exponential depen-
dence on the residence time indicates that the transitions
are random and follow Poisson statistics as expected. From
the exponential fit to the histograms, the transition rate out
of each state is extracted. The transition rates out of the two
oscillation states are measured to be identical to within
experimental uncertainty at all noise intensities. Fig-
ure 4(b) plots the logarithm of the transition rate as a
function of the inverse noise intensity. The transition rate
varies exponentially with inverse noise intensity, demon-
strating that the switching is activated in nature. Using

Eq. (2), we obtain the corresponding activation barriers
at a particular driving frequency from the slope in Fig. 4(b).
Transitions out of the zero-amplitude state are also found
to be activated and follow Poisson statistics in a similar
manner.

The above procedure is repeated to determine the acti-
vation barriers at other driving frequencies. Figure 5(a)
shows the driving frequency dependence of the activation
barriers R1 and R2 for switching out of the oscillation states
and the zero-amplitude state, respectively. At the high
frequency end of Fig. 5(a), only the zero-amplitude state
is stable. As ! is decreased, two stable oscillation states
(separated by an unstable state) emerge at !b1. With
increasing frequency detuning �!1 � !b1 �!, the pair
of oscillation states move further apart in phase space
[Figs. 3(a) and 3(b)] and R1 increases. At !b2, the zero-
amplitude state becomes stable. The appearance of the
stable zero-amplitude state is accompanied by the creation
of two unstable states separating it in phase space from the
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FIG. 3. The occupation in phase space at four different !’s. X
and Y denote the two quadratures of oscillation. The gray scale
represents the number of times that the oscillator is measured to
lie within a certain location in phase space. (a) ! �
41 171:6 rad s�1. A pair of oscillation states emerges near !b1.
(b) ! � 41 153:0 rad s�1. As ! decreases, the two states move
further apart in phase space. (c) ! � 41 139:8 rad s�1. When
!<!b2, an addition attractor at the origin appears.
(d) ! � 41 124:8 rad s�1. With further decrease in !, the occu-
pation of the zero-amplitude state increases.
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FIG. 4. (a) Histogram of the residence time in one of the
oscillation states (! � 41 163:0 rad s�1) before switching oc-
curs. The solid line is an exponential fit. (b) Logarithm of the
transition rate as a function of inverse noise intensity.
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FIG. 5. (a) Dependence of the activation barriers R1 (solid
squares) and R2 (open circles) on the frequency of parametric
modulation for sample A. (b) logR2 vs log�!2 for sample A. The
lines are power law fits to different ranges of �!2. (c), (d) logR1

vs log�!1 for samples A and B, respectively.
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FIG. 2. Oscillation amplitude (a) and phase (c) for ! �
41 163:0 rad s�1. For !b2 <!<!b1, transitions occur when
the phase slips by �. (b) When !�� 41 124:8 rad s�1� is lower
than !b2, transitions involve jumps in the amplitude. (d) In the
high amplitude state, the oscillation phase takes on either one of
two values that differ by �. The phase fluctuates when the
oscillator is in the zero-amplitude state.

PRL 99, 060601 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
10 AUGUST 2007

060601-3



two stable oscillation states. R2 initially increases with
frequency detuning �!2 � !b2 �! in a fashion similar
to R1. Close to !b2, R1 exceeds R2 and the occupation of
the oscillation states is higher than the zero-amplitude state
[Fig. 3(c)]. As ! decreases, R2 continues to increase
monotonically while R1 remains approximately constant.
As a result, R1 and R2 cross each other at�41 140 rad s�1,
beyond which the occupation of the zero-amplitude state
becomes higher than the oscillation states. The dependence
of the occupation on frequency detuning was also observed
in parametrically driven atoms in magneto-optical traps
[7].

In general, the activation barriers R1 and R2 depend on
various parameters of the device. Nonetheless, at frequen-
cies close to the bifurcation points, theoretical analysis
indicates that the activation barriers exhibit universal scal-
ing, with R1;2 / j!b1;2 �!j�. For pitchfork bifurcations in
a parametric oscillator that involve merging of three states,
� is predicted to be 2 [15]. Figures 5(b) and 5(c) show the
dependence of R1;2 on frequency detuning �!1;2 on loga-
rithmic scales. At small detuning, both activation barriers
show power law dependence on detuning. The critical
exponents are measured to be 2:0	 0:1 and 2:00	 0:03
for R1 and R2, respectively, for sample A. For sample B, the
exponent of R1 is measured to be 2:00	 0:02 (the range of
�!1 is smaller in sample B because near !b2 where the
oscillations are large, the torsional plate occasionally
comes into contact with the electrodes in the presence of
injected noise). This quadratic dependence of the activa-
tion barrier on detuning near the bifurcation points is
predicted to be system independent and is expected to
occur in other parametrically driven, nonequilibrium sys-
tems such as electrons in Penning traps [2] and atoms in
magneto-optical traps [7,8]. Away from the vicinity of the
bifurcation point, however, the variation of the activation
barrier with frequency detuning is device specific.
Figures 5(b) and 5(c) show crossovers from the quadratic
dependence to different power law dependence with ex-
ponents 1:43	 0:02 and 1:53	 0:02 for R1 and R2, re-
spectively. These values are distinct from the exponents
obtained in parametrically driven electrons in Penning
traps [2] because the nonlinearity and damping are differ-
ent for the two systems.

Recent theoretical predictions indicate that the symme-
try in the occupation of the two oscillation states in a
parametrically driven oscillator will be lifted when an
additional small drive close to frequency !=2 is applied
[18]. A number of phenomena, including strong depen-
dence of the state populations on the amplitude of the small
drive and fluctuation-enhanced frequency mixing, are ex-
pected to occur. Further experiments are warranted to test
such predictions and reveal other fluctuation phenomena in
parametrically driven oscillators.

Parametric pumping is widely used to improve the sen-
sitivity of micromechanical detectors by mechanically am-

plifying a signal [19] or by reducing the resonance
linewidth in viscous environments [20]. The sharp jump
in oscillation amplitude at the bifurcation points is utilized
for accurate determination of device parameters [4,6,13].
As the dissipation increases in a resonantly driven Duffing
oscillator, the natural resonance linewidth becomes very
broad, and the hysteresis region shrinks for comparable
oscillation amplitude. Parametrically driven oscillators, on
the other hand, maintain the sharp jump in response at the
subcritical bifurcation point even for large damping. It is
not necessary to increase the oscillation amplitude pro-
vided that the stronger parametric pumping compensates
the energy loss due to damping [21]. Therefore, parametric
oscillators are particularly useful for sensing in liquid or
gaseous environments. Apart from the relevance to other
parametrically driven nonequilibrium systems [2,7,8], the
comprehensive study of the dependence of the transition
rate on frequency reported here may prove useful in sens-
ing applications [22] with parametrically driven microme-
chanical devices.
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