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We present a theory of the transmission of guided matter-waves through Sagnac interferometers.
Interferometer configurations with only one input and one output port have a property similar to the phase
rigidity observed in the transmission through Aharonov-Bohm interferometers in coherent mesoscopic
electronics. This property enables their operation with incoherent matter-wave sources. High rotation
sensitivity is predicted for high finesse configurations.
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The Sagnac effect in a wave propagating through a
closed rotating ring induces a phase shift proportional to
the angular frequency � of this rotation and the area A of
the ring [1]. For light waves with frequency ! this phase
shift is �light � �2!A=c2��, where c is the speed of
light. For de Broglie waves of nonrelativistic particles
with mass m, the phase shift is �matter � �2mA=@�� �
�mc2=@!��light [2,3], so that the rotation sensitivity of a
matter-wave Sagnac interferometer (SI) is potentially bet-
ter by a factor of �1011. First experimental attempts dem-
onstrated rotation sensitivities comparable to or even better
than those of the optical SI [4–6]. However, these ‘‘one-
pass’’ SIs are limited by their small effective area and the
relatively low flux available from coherent matter-wave
sources. Light SIs with ‘‘multipass’’ configurations (’’high
finesse’’), such as ring laser gyros, use larger effective area
to improve rotation sensitivity. Recently dynamic magnetic
potentials [7] and waveguide ring structures for cold atoms
[8,9] were demonstrated, opening the door for the develop-
ment of multipass guided atomic Sagnac interferometry.

In this Letter we use the analogy [10] between the
Sagnac effect for massive neutral particles and the
Aharonov-Bohm (AB) effect in coherent electron trans-
mission through mesoscopic rings [11]. AB interferome-
ters with only two ports connected to the ring show ‘‘phase
rigidity’’ of the transmission pattern as a function of the
magnetic flux �, when an effective path length difference
between the interferometer arms is introduced [12,13].
Because of time-reversal invariance and current conserva-
tion in any system with two ports, the transmission is
invariant under magnetic field inversion �! ��. This
property, when applied to atom SIs, leads to their robust-
ness under effective path length differences and enables
their operation with high-finesse and incoherent sources,
which are available with higher particle flux. SIs of this
kind may increase rotation sensitivity or may enable min-
iaturization onto atom chips [14] without suppressing it.

In general, a SI consists of a loop and one or more
junctions, each consisting of one or more beam splitters
(BS) connecting the loop to input and output channels.
Here we consider a 1D model where each waveguide

permits a single transverse mode, but finally show how to
extend it to the multimode case. In 1D, a linear junction
with np ports is represented by a np � np unitary scattering
matrix S connecting the output amplitudes to the input
amplitudes at the ports. As demonstrated in Fig. 1 we
denote the indices of the ports of the input junction con-
nected to the SI loop by � and � with corresponding input
and output amplitudes a� and b�, while the input ampli-
tude ain (normalized to ain � 1) is incident from port i. The
amplitudes are then related by
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If the system is linear, then the amplitudes a�, b� are
related to the amplitudes a�, b� by
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FIG. 1 (color online). Geometries of guided matter-wave
Sagnac interferometers: (a) MZ. Open squares mean controllable
reflectivity. When fully (not) reflecting we name the interfer-
ometer: closed (open) MZ. (b) 2-port loop. Closed squares are
fully reflecting mirrors. (c) 4-port loop. (d) Single junction loop.
In all configurations horizontal lines mean 50%–50% BSs while
vertical lines mean BSs with a transmission amplitude it.
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where a� and b� are taken at the internal ports � and �
and the 2� 2 Smatrix SL�k;�� describes the transmission
through the loop, thereby containing terms of the form
ei�kL���, @k being the longitudinal momentum of the par-
ticles, L the circumference of the loop and � the rotational
phase shift. SL is in general nonunitary when particles can
leave the loop from another junction, such as through port
o in Fig. 1(a). Time-reversal symmetry (Onsager relations
[15]) implies that S�� � S�� and that SL has the form

 SL �
a bei�

be�i� c

� �
;

where a, b, and c are functions of k. By substituting Eq. (2)
into Eq. (1) we obtain an equation that can be solved either
directly or as a perturbation expansion
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where I is the 2� 2 unity matrix and T � ~SSL, ~S being the
submatrix of S appearing in Eq. (1). The matrix T is
proportional to eikL and has eigenvalues whose modulus
is always smaller than 1. This permits the perturbation
expansion in T, where a�, b� are described as a sum of
partial waves a� �

P
1
n�0 a

�n�
� , b� �

P
1
n�0 b

�n�
� such that T

relates the nth terms, describing waves propagating a
distance of nL along the loop, to the (n� 1)th term. The
output of the SI is obtained when propagating the ampli-
tudes a�, b� through the SI arms and transmitting them
into the output port through the output junction. If no
imperfections exist in the arms, the output amplitude at
port o is given by

 aout � S0o�0e
i�k��=L�L�a� � S0o�0e

i�k��=L�L�b�; (4)

where S0 is the scattering matrix of the output junction and
L�, L� are the lengths of the corresponding arms, such that
L � L� � L�.

Time-reversal symmetry, which determines the symme-
try properties of the scattering matrices ~S and SL discussed
above yields the following form of the transmission
through the SI, true for any geometry [13]

 P�k;�� � jaoutj
2 �

B� C cos��� ��

1�D cos��Hcos2�
; (5)

where B, C, D, H, and � are functions of k. When the SI
has only one input and one output port, time-reversal
symmetry and current conservation imply that P��� �
P����, so that � � 0 or � � � (phase rigidity). In what
follows we show that while in an SI having more than two
open ports � may be strongly k dependent, such that an
integration over a wide momentum bandwidth �k washes
out the � dependence of P���, this dependence is con-

served in an SI having only 2 open ports and fixed �,
enabling wide bandwidth operation.

Let us first examine a simple SI which does not satisfy
the condition for phase rigidity. The Mach-Zehnder (MZ)
SI shown in Fig. 1(a) is analogous to the SI implemented in
[6]. It contains two 50%–50% junctions where an incident
particle may be either reflected with amplitude S�;i �
S�;i0 � 1=

���
2
p

or transmitted with amplitude S�;i � S�;i0 �
i=

���
2
p

. This is a one-pass SI with no reflections from the
loop ports � and � back into the loop (~S � SL � T � 0),
so that the transmission probability at the output port o is
P�k;�� � sin2	��� k�L�=2
, where �L � L� � L� is
the length difference between the SI arms. P�k;�� has
the form (5) with B � �C � 1=2, D � H � 0 and � �
k�L. If �L � 0 and the input flux has a Gaussian spectrum
G�k� of bandwidth �k around k � �k, then the time-
averaged transmission probability P��� �R
dkG�k�P�k;����� becomes

 P��� �
1

2

�
1� � cos

�
2mA
@

�� �k�L
��
; (6)

where the interference visibility � � e��k2�L2=2 decreases
with momentum bandwidth and path difference. If, in
addition, the atomic beam is not perfectly collimated so
that parts of it take paths surrounding different effective
area with uncertainty �A, then � is multiplied by a factor
exp	��2m=@�2�A2�2=2
 � exp	���A2=A2��2=2
. Both
suppression factors have been observed experimentally,
as demonstrated in Fig. 3 of Ref. [6].

In contrast, we now study a closed loop SI obtained by
closing the ports i0 and o0 of the MZ with mirrors placed in
front of them [Fig. 1(a)], so that each junction now has only
3 open ports. A particle incident from one of the loop arms
on such a junction may be reflected back into one of the
loop arms with amplitudes given by
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; SL�

ei�kL��
0�

2
eik�L iei�

ie�i� �e�ik�L

� �
; (7)

where �, �0 are phases due to reflection at the mirrors.
Following the above prescription, we obtain the transmis-
sion probability as in (5) with � � 0, such that P��� �
P����. In view of Eqs. (3) and (4), it is now insightful to
note that the output amplitude can be written as a sum
aout �

P
1
n�0 ane

i�n�1=2�kL, where the amplitudes an con-
tain the terms e�ik�L, which are slowly oscillating relative
to the fast oscillation of einkL, if �L� L. In the trans-
mission probability P�k;�� � jaoutj

2 fast oscillations ap-
pear in cross terms a�nan0 , with n � n0 describing
interference between trajectories with different number
of passes through the loop in either direction. In a realistic
situation where the coherence length of the matter-wave
source is much smaller than L (�k
 2�=L), these inter-
ference terms will be eliminated. We may then define a
slowly varying time-averaged transmission probability in-
tegrated over a period 2�=L of the fast oscillations
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describing the transmission of a quasimonochromatic flow
(�k�L� 1), where the coherence length is large relative
to effective path length differences between trajectories
with the same number of passes. In the incoherent limit
where �k�L
 1, integration of P�k;�� over the band-
width is equivalent to taking the average of �P over 0<
k�L < 2�. In this limit only paths with exactly the same
length may interfere.

The closed MZ transmission probability in the quasimo-
nochromatic case is found to be

 

�P �
1� 1

2 �cos2k�L� cos2��

1� 1
4 �cosk�L� cos��2

; (9)

as shown in Fig. 2(a) for a few values of k�L (thin curves).
In the incoherent limit (thick curve) the visibility is not
suppressed as in the open MZ but stays fixed at � �
0:1813. This residual visibility may be understood as in-
terference between counterpropagating waves that follow
trajectories with exactly equal lengths, as in white light
interferometry. The relative phase between these waves
depends only on the rotation frequency � but not on k.
In the closed MZ the existence of such pairs of interfering
trajectories is allowed by internal reflections, which in a
system with a single transverse mode are an inevitable
result of current conservation in a junction with only three
ports (as in the AB experiments).

The rotation sensitivity is the minimal rotation fre-
quency change ��min that generates a noticeable SI trans-
mission change (beyond noise level). For an average
incident flux F with a Poissonian particle number distribu-
tion, it is

 ��min�
@

2mA
��min�������
F	
p ; ��min�

�����������
P���

q ��������@P@�
��������
�1
; (10)

where 	 is the measurement time and ��min the dimen-
sionless phase sensitivity per particle. The best sensitivity
is achieved near points with maximal derivative P0���. For
SIs with sinusoidal transmission as the open or closed MZ,
the best sensitivity is inversely proportional to the visibil-
ity. In particular for the incoherent closed MZ ��min ��������������

1� �
p

=2� � 3 at � � �=4.
In order to achieve better rotation sensitivity we now

turn our attention to SIs with a high-finesse loop. The
finesse F � �2�=L�=�k is inversely proportional to the
resonance bandwidth �k � �1� R�=

����
R
p

L, R being the
probability to stay in the loop for a full round trip. For a
high-finesse loop (R � 1), F is proportional to the average
number of passes of a particle through the loop before
exiting through a junction. The closed MZ SI can be
converted into a high-finesse SI by replacing its BS with
a ‘‘vertical’’ BS rotated by 90� relative to the MZ BS
[Fig. 1(b)]. A particle incident on the vertical BS has
reflection and transmission amplitudes r and it �

i
��������������
1� r2
p

, which are controllable, for example, with a
magnetic tunneling barrier as suggested in [16]. F 
 1
requires that r � 1 and t� 1. Here the transmission am-
plitude between the two arms S�� � S�� � r, while back
reflection through the mirror is only permitted to arm ��0

with amplitude S�� � �t2ei�. An analysis similar to that
of the closed MZ yields the quasimonochromatic trans-
mission probability shown in Fig. 2(b) for different values
of k�L (thin curves). The transmission has a symmetric dip
at � � 0, whose depth and width depend on the value of
k�L. Its width for a given value of k�L is proportional to
�k � �1� r

4�=r2L � 2t2=rL and inversely proportional
to F � �r=t2. In the incoherent limit (thick curve),
�P��� � P0	1�
L���
, where P0 � t2=r, L��� is a
Lorentzian of FWHM �� � �kL and 
 � 0:2935 [visi-
bility � � 
=�2�
� � 0:172]. Using Eq. (10), the best

sensitivity near � � ���=2 is ��min ���=
������
P0

p
=� �����������

2��

q
=�� / F�1=2. The transmission dip is due to de-

structive interference between pairs of equal length paths
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FIG. 2. Transmissivity of Sagnac interferometers as a function
of rotational phase shift � (a) closed MZ. (b) 2-port loop. (c) 4-
port loop. (d) single junction loop. Thin curves in plots (a)–(c)
represent the quasimonochromatic transmission �P��� for few
values of phase difference between the two arms k�L and thick
curves represent the transmission in the incoherent limit. The
dashed curve in (a) represents the open MZ transmission in the
incoherent limit. In (b)–(c) the BS transmission amplitude is t �
0:25. Comparison of the closed and open MZ in (a), and
comparison of (b) and (c), demonstrate how time-reversal sym-
metry �P��� � �P���� preserves the visibility when averaged
over k�L (incoherent limit). In (d) solid curves represent trans-
mission �P��� for few values of t (numbers) and the dashed curve
is the transmission for an incident thermal mixture of 101
transverse modes j with 0< tj < 1 (equal spacing) and n�in�j /

e��tj (� � 10). Transmission at small � is dominated by low tj
states (high finesse). The dip in the incoherent signal of (b) and
(d) at � � 0 is due to destructive interference between exact
same length trajectories (due to �=2 phase difference between
the r and t amplitudes).
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when � � 0. For comparison, we calculated the trans-
mission of a similar high-finesse SI with additional ports
using a combination of a 50%–50% BS and a vertical BS
at each junction [Fig. 1(c)]. The quasimonochromatic
transmission of this SI [thin curves in Fig. 2(c)] is not
symmetric about � � 0 and the visibility drops to 0 in
the incoherent limit (thick curve).

Finally, we utilize the formalism developed here to
analyze a simple SI where each trajectory has a counter-
propagating counterpart of the same length. The SI con-
figuration in Fig. 1(d) contains only one junction for input
and output. Its output amplitude is obtained by substituting
L� � L� � L and S0 � S in Eq. (4). The matrix T for this
SI is diagonal, corresponding to no coupling between
counterpropagating modes, but on the other hand, all tra-
jectories of the same order n have exactly the same length,
giving rise to destructive interference at� � 0. The slowly
varying transmission probability (8) is then a sum over k
independent contributions t4r2nsin2	�n� 1��
 resulting in
the following transmission, which holds both for quasimo-
nochromatic and incoherent inputs

 

�P��� �
t2

1� r2

�
1�

cos2�

1� 4�r=t2�2sin2�

�
(11)

with a Lorentzian dip at � � 0 of FWHM �� � t2=r, full
visibility (� � 1) and an asymptotic transmission P0 �
t2=2r, as shown in Fig. 2(d) (solid curves) for different

values of t. The best sensitivity at �! 0 is ��min �

t=�2
�����
2r
p
� �

������������
��=8

q
, which scales as F�1=2, with F �

2�r=t2.
To extend the single mode model to the multimode case

where the waveguide supportsN > 1 transverse modes, we
replace the amplitudes ain, aout, a� and b� with N com-
ponent vectors and the matrices ~S, SL and T with 2N � 2N
matrices. If different transverse modes j have different
tunneling amplitudes tj, then in the absence of mode mix-

ing the transmission of an incident thermal flux with n�in�j

particles in mode j is the sumNout��� �
P
jn
�in�
j

�Pj���. For
the single junction SI [Eq. (11)] one always finds �Pj�� �
0� � 0 and at small� the transmission is dominated by the
modes with low tj (high finesse), as seen in Fig. 2(d), where
we demonstrate the transmission for a multimode input
with n�in�j / e��tj (dashed curve). In the presence of sym-
metric mode mixing and phase dispersion, �P��� still van-
ishes at � � 0 and our numerical analysis shows that the
transmission is not significantly affected, due to the strong
symmetry of the device.

To estimate the sensitivity of a Sagnac atom chip, we
assume a waveguide ring of radius 1 cm about 10 
m
above the chip surface with magnetic field gradients of
the order jrBj � 1 G=
m. The centrifugal forcemv2=r of
the circulating atoms must not exceed 
BjrBj. This limits
the maximum velocity of the atoms to v� 10 m= sec . An

atomic trap lifetime of about 10 s permits up to 1000–2000
rotations, corresponding to a tunneling amplitude t�
0:035 at the BS. For the single junction loop we obtain
��min � 0:013. If we assume that 1% of the available flux
of above 109 s�1 (e.g., 2D MOT [17]) can be loaded into
the waveguide, we obtain a sensitivity of ��< 5�
10�12 rad s�1=

������
Hz
p

, �2 orders of magnitude better than
the best value published to date [18].

The above theoretical model will enable a more com-
prehensive study of multimode operation and the effect of
dispersion and imperfections in the SI components, which
is needed before applying the suggestions in this Letter to
real systems. Other effects such as Berry phase in a mag-
netic ring potential [19] and atom-atom collisions in a
system of bosons or fermions should be studied as well.
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