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We explore the capability of spin-1=2 chains to act as quantum channels for both teleportation and
transfer of qubits. Exploiting the emergence of long-distance entanglement in low-dimensional systems
[Phys. Rev. Lett. 96, 247206 (2006)], here we show how to obtain high communication fidelities between
distant parties. An investigation of protocols of teleportation and state transfer is presented, in the realistic
situation where temperature is included. Basing our setup on antiferromagnetic rotationally invariant
systems, both protocols are represented by pure depolarizing channels. We propose a scheme where
channel fidelity close to 1 can be achieved on very long chains at moderately small temperature.
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Introduction.—In order to accomplish the main tasks of
quantum information, a sizable amount of entanglement is
needed [1]. In addition, the particles that share entangle-
ment must be accessed individually for measurements and,
quite importantly, they must be well separated in space.
Spin chains are of particular interest as they may act as
communication channels that link quantum solid state
registers without the need of transducing between different
types of qubits.

Recently it was shown [2] that in some spin models at
zero temperature (i.e., in the ground state) a selected pair of
distant sites A and B can be highly entangled. In some
cases sites A and B may be taken infinitely far apart still
retaining a high amount of entanglement, a situation that
was termed long-distance entanglement (LDE). An ex-
ample of this situation is given by the end sites of an
open S � 1=2 dimerized Heisenberg chain. Even for mod-
erate values of the dimerization this effect is strong enough
to develop nonlocal correlations, i.e., entanglement, be-
tween the end sites of an open chain of infinite length.

The main aim of this Letter is to explore the actual
feasibility of quantum teleportation and transfer across
spin-1=2 chains that exhibit LDE. Having in mind realistic
optical lattice implementations of spin chains [3], we con-
sider the principal cause of decoherence which is given by
the temperature. Using the same schemes proposed in
Ref. [2], we expect the entanglement between A and B to
deteriorate when the temperature becomes of the order of
the lowest excitation gap �. As this gap, which originates
from the boundary conditions, typically vanishes when the
length L of the chain increases, we are led to explore the
trade off between temperature and chain length.

As will be clarified throughout this Letter, antiferromag-
netic chains with global SU(2) invariance have several
advantages. Typically, in these systems rotational symme-
try is never broken. As a consequence the two-particle
reduced density matrix �AB (obtained by tracing the total
� over all the Hilbert space except sites A and B) maintains

SU(2) invariance; i.e., it is a Werner state [4] in the
language of quantum information. Werner states are de-
scribed by a single parameter which can be taken to be
h�zA�

z
Bi� � Tr��AB�

z
A�

z
B� 2 ��1; 1=3�. The interval

h�zA�
z
Bi� 2 ��1;�1=3� corresponds to entangled �AB.

At T � 0 the density matrix is � � jGihGj, with jGi the
ground state, while at finite temperature it is given by the
canonical density operator � � Z�1e��H, with � � 1=T
(in units of kB) and Z the normalization factor. At low
temperatures we can approximate the thermal density ma-
trix by retaining only the ground state and the first excited
states. On quite general grounds [5] the ground state jGi is
a total singlet, while the first excitations are given by a
spin-1 triplet jmi labeled by the total magnetization: Sztot �
m � �1; 0; 1. Then at low temperatures we can write

 e��H ’ e��E0

�
jGihGj � e���

X
m��1;0;1

jmihmj
�
; (1)

where E0 is the ground state energy and � is the first
excitation gap. Notice that this approximation correctly
maintains rotational invariance. The thermal reduced den-
sity matrix �AB�T� of A and B depends only on the average
value

 h�zA�
z
BiT �

1

1� 3e���
�hGj�zA�

z
BjGi

� e����h1j�zA�
z
Bj1i � 2h1j�xA�

x
Bj1i��; (2)

which has been written exploiting the SU(2) invariance.
The form (2) is particularly useful for numerical density-
matrix renormalization-group (DMRG) simulations [6]
since it involves only the computation of the lowest-state
correlation functions in the sectors m � 0 and m � 1.

In the situations analyzed in [2] where LDE is present in
the ground state, the S � 1 triplet state is localized near the
sites A and B. As we will show below, the entanglement in
�AB�T� is maintained until T becomes comparable with the
gap �, when the triplet state becomes non-negligible. We
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are then led to prefer systems with a large gap �. Quite
generally, however, open systems with a finite bulk corre-
lation length � develop midgap levels scaling exponen-
tially with the system size � ’ e�L=� [7]. On the other
hand, systems with a diverging correlation length give rise
to an algebraic decay, �� L��. The generality of this
conjecture—that establishes a relation between bulk cor-
relation length and the decay of the midgap—is a chal-
lenging question that deserves further studies.

For the above-mentioned reasons we propose to use an
open S � 1=2 Heisenberg chain with different interactions
at the end points,

 Hchain � HC � Jp� ~SA 	 ~S2 � ~SB 	 ~SL�1�; (3)

as depicted in Fig. 1 (system ACB). In such a system there
is strictly no LDE in the thermodynamic limit, but for finite
size one can always choose Jp=J small enough so as to
have arbitrarily large entanglement between A and B in the
ground state. Moreover, we checked numerically that in
this system the first gap � scales only algebraically with
the size of the system L: �� L�� as can be seen in Fig. 2.
Note the slow decay of the gaps due to the small value of �
(see inset).

Teleportation.—Entangled Werner [SU(2) invariant]
states have several advantages when used as a resource

for quantum informational devices. As far as teleportation
is concerned, one can show [8] that the standard teleporta-
tion scheme [9] is the best over all possible schemes at least
in the region where a better-than-classical fidelity is
achieved. In the standard protocol an unknown state � at
site S (see Fig. 1) is teleported to site B by making a joint
Bell measurement on sites S and A and transmitting the
result of the measurement j to B where a unitary trans-
formation is applied. If A and B share a pure maximally
entangled [SU(2) invariant] state j �iAB � �j"#iAB�
j#"iAB�=

���
2
p

, then the state � is transferred to B exactly. In
a realistic situation, external noise of any kind turns the
pure state j �iAB into a nonmaximally entangled mixed
state �AB.

In many protocols, the entangled state �AB must be
created shortly before the teleportation procedure takes
place. Instead, in our scheme we permanently have the
use of an entangled pair at equilibrium. If teleportation is
performed sufficiently fast, then decoherence does not get
a chance to act. Using this protocol with a Werner state as
resource, the fidelity of teleportation does not depend on
the outcome j nor on the state to be teleported. By repeat-
ing the experiment many times with the same input state,
the teleportation process is represented by a quantum
channel mapping input states � at site S into teleported
states ���� at site B [10]. In this case, the teleportation
channel is given precisely by a pure depolarizing channel:

 ���� � #�� �1� #�121: (4)

The parameter # which identifies the channel—sometimes
called shrinking factor—takes the simple form # �
�h�zA�

z
Bi. Obviously, � turns into an ideal channel when

# � 1, i.e., when �AB is the singlet j �iAB. The fidelity of
teleportation is

 f � Tr������� � �1� #�=2 � �1� h�zA�
z
Bi�=2;

that indeed does not depend on the state to teleport.
For our class of systems, # is given by Eq. (2). When the

temperature is increased from zero, it eventually reaches a
value T
, above which the thermal state �AB�T� becomes
separable. This occurs when h�zA�

z
BiT
 � �1=3, that gives

 T
 � �
�

log
�
h1j�zA�

z
Bj1i � 2h1j�xA�

x
Bj1i � 1

�hGj�zA�
z
BjGi � 1=3

��
�1
: (5)

Typical values in our scheme are obtained using the two
qubit singlet and triplet pure states, for which we get T
 �
�= log�3� � 0:9�. The gap � and the correlations appear-
ing in Eq. (5) can be calculated numerically as functions of
L and Jp. In Fig. 3 we plot the results, obtained from
DMRG simulations for a chain of L � 50 sites. In view
of an optical lattice experiment, these curves could serve to
locate the working point to achieve the maximal possible
fidelity.

State transfer.—As suggested by Bose [11], open spin
chains can be exploited for transferring quantum states
from one end to the other end of the chain. Let a chain of

FIG. 1. Model Hamiltonian considered for teleportation (joint
measure between S and A) and for transfer (switching on � at a
given time).
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FIG. 2 (color online). Finite-size scaling behavior of the low-
est gaps. In the inset is plotted the scaling exponent fitted with
the law � � cL��. The data were obtained with a DMRG code
using 400–500 optimized states and three finite system sweeps.
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length L be described by the Hamiltonian Hchain. For times
t < 0 the chain is in its ground state or possibly in a state of
thermal equilibrium �chain � Z�1e��Hchain . At a time t � 0

a spin-spin interaction � ~SS 	 ~SA between the sender S (that
stores the pure state to be transferred j�i) and site A is
switched on and let to evolve with the Hamiltonian, as
depicted in Fig. 1,

 H � Hchain � � ~SS 	 ~SA: (6)

After a given optimal time t
, the initial state j�i gets
transferred to site B with fidelity f.

We stress here the importance of dealing with antiferro-
magnetic interactions. In this case, elementary excitations
typically have relativistic linear dispersion for small mo-
menta, i.e., !�k� ’ vjkj where v is the effective speed of
light. On the contrary, in ferromagnetic systems, as the one
originally proposed in [11], the dispersion of elementary
excitations is generally quadratic for small momenta. This
fact leads to dispersive effects which limit the fidelity of
transfer.

From a quantum information perspective, one can easily
show that the state transfer protocol with SU(2) invariant
systems is precisely given by the depolarizing channel
given by (4). The unique parameter specifying the channel
is given in this case by # � h�zB�t�i�, � � j"ih"j � �chain,
where the time evolution is done according to the total
Hamiltonian (6). The calculation of this quantity in a
strongly correlated system is a nontrivial task. However,
an approximation scheme is possible for the models where
we observed LDE (or quasi-LDE).

Although the spins on A and B do not interact directly,
they experience an effective interaction mediated by the
system C. Because of rotational invariance, the model (3)
is effectively mapped, at every perturbative order, onto an
SU(2)-symmetric Hamiltonian for the sites A and B:

 Heff � Jeff
~SA 	 ~SB: (7)

This approximation holds when the energy splitting Jeff

caused by Heff is smaller than the typical gaps in the
unperturbed Hamiltonian HC. On the one hand, we know
from conformal field theory [12] that finite-size gaps inHC
scale as JL�1. On the other hand, Jeff is nothing but the
singlet-triplet gap �. We have numerically checked that �
scales as JL��, in the system Hchain, as can be seen
from Fig. 2. The correct prefactor has the form ��Jp=J�.
From perturbation theory we know that ��x� � x2 for
small x. This means that we can reliably approximate the
model (3) with Heff (7), provided that ��Jp=J�< L��1,
i.e., Jp < JL���1�=2 when Jp is small enough.

Our scheme of approximation reduces the state transfer
protocol to an effective three site problem where the time
evolution is unitary by means of the Hamiltonian H �
� ~SS 	 ~SA � Jeff

~SA 	 ~SB. The average is done with respect
to the ensemble �0 � j�ih�jS � �AB, where �AB � �1�
g ~�A 	 ~�B�=4 is the most general mixed state which pre-
serve SU(2) invariance and g � h�zA�

z
Bi that includes de-

coherence effects from the environment C as well as the
effect of temperature.

Time evolution gives ��t� � e�itH�j�ih�jS � �AB�e
itH.

The fidelity of the transfer from site S to site B at a given
time t is f�t� � Tr���t�j�ih�jB�. After some algebra we get
 

f�t� �
1

36!2 f�22� 4g��J2
eff � �

2� � �Jeff�19� 10g�

� 2�1� g�!�!� cos�t!�=2� �!� cos�t!�=2��

� 3�Jeff�2g� 1� cos�!t�g; (8)

where !
 � !
 �Jeff � �� and ! �
������������������������������������
J2

eff � Jeff�� �2
q

.
The maximal possible interference (constructive and de-
structive) is achieved when the frequencies are commen-
surate each other, i.e., for � � Jeff . In this case the first
maximum of the fidelity is attained at a time

 t
Jeff � 2 arccos
�
1� 2g�

����������������������������������
12g2 � 12g� 9

p
4�1� g�

�

� �� 2�g� 1�=3: (9)

The value g � �1 represents the ideal case where we have
a pure singlet �AB � j �ih �jAB at our disposal, with
t
 � �=!. In the nonideal case, the time for best transfer
gets only slightly shifted by a value which in the worst case
(g � 1=3) is 1.448. The maximum fidelity is
 

f
 � f�t
� �

���
3
p
�4g2 � 4g� 3�3=2 � 24g2 � 66g� 33

48�1� g�2

� 1� 2�g� 1�=9: (10)

As expected, the transfer is perfect for g � �1. However,
the transfer fidelity remains very high for all the possible
values g 2 ��1; 1=3�. The lowest possible value f
 � 7=8
is attained at g � 0 (maximally mixed case). Anyway, we
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FIG. 3 (color online). Fidelity of teleportation between end
sites A and B as a function of temperature for the Heisenberg
model. The curves refer to different values of the interaction Jp.
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must restrict ourselves to the situation where the approxi-
mation of unitary evolution is valid, i.e., g ’ �1, and
correspondingly the transmission fidelity is very close
to 1. The present scheme is expected to be valid as long
as one can neglect dynamical effects that may lead to
decoherence during transfer, i.e., t
 < tD, where tD is the
decoherence time.

As in the teleportation case, we have considered the
transfer of a state using a Heisenberg chain playing the
role of system C. In Fig. 4 the optimal transfer fidelity is
plotted as a function of the chain length L at temperature
T � 0 and T � 10�3J, for some values of Jp. In any case,
we find a more-than-classical transmission fidelity even for
chains of length 100 sites. For obtaining these results, the
existence of entanglement between the two distant sites A
and B is crucial.

Now, let us draw an additional consideration. First, we
note that t
 / J�1

eff � L�=�J��, with �< 1 (see Fig. 2). On
the other hand, our scheme is expected to be valid under the
condition ��Jp=J� & L��1 which implies t
 * L=J, con-
sistently with the ‘‘flying’’ qubit picture where the infor-
mation is carried by elementary spin excitations.

Finally, we mention that the transfer protocol may be
used also for sharing entanglement between distant parties
[11]. In our situation, we already have entanglement be-
tween distant parties, but we can ask how it may be further
increased.

The idea is to start having a maximally entangled singlet
�in � j �ih �jXS at sites S and at an extra neighboring
site X completely decoupled from the rest. Then, we send
the S part of the input state �in through the quantum
channel described by our transmission protocol. At a cer-
tain time t
, we obtain an outcome state living on the pair
of sites X and B,

 �out � �1� p��in �
p
3

X3

k�1

1 � �k�in1 � �k;

where p � 3�1� #�=4 is the so-called error probability. In
this state, the concurrence between X and B is C��out� �
max�1� 2p; 0� � max�3f
 � 2; 0�, while the original
state �AB had a concurrence given by C��AB� �
max��3=2g� 1=2; 0�. Using f
 from Eq. (10) it is pos-
sible to estimate that the concurrence is increased, i.e.,
C��out� � C��AB�, where the equality holds only when
g � �1 (it is not possible to increase the entanglement
of a singlet). The minimum value is achieved for the
completely mixed case g � 0 where the concurrence is
C��out� � 5=8 � 0:625.

Conclusions.—We have given an explicit evidence that
open antiferromagnetic Heisenberg chains may represent
good quantum channels for teleportation and state transfer.
This result relies mainly on the possibility to entangle the
two end spins (quasi-LDE) by choosing an appropriate
coupling Jp. We have shown that, despite the smallness
of the lowest gap, high fidelities of both teleportation and
transfer may be achieved, with a trade off between tem-
perature and chain length. The conclusions drawn in this
Letter can be extended to higher spin or electronic models
that exhibit LDE. It is tempting to speculate about the
possibility of reproducing these effects in optical lattice
environments.
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FIG. 4 (color online). Transfer fidelity at optimal time as a
function of the chain length L. The curves refer to different
values of the coupling Jp between the probes (A and B) and the
chain. Results are reported at both zero and finite temperature.
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