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An analysis of extensive simulations of interacting self-avoiding polygons on cubic lattice shows that
the frequencies of different knots realized in a random, collapsed polymer ring decrease as a negative
power of the ranking order, and suggests that the total number of different knots realized grows
exponentially with the chain length. Relative frequencies of specific knots converge to definite values
because the free energy per monomer, and its leading finite size corrections, do not depend on the ring
topology, while a subleading correction only depends on the crossing number of the knots.
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Issues related to the probability of realization of con-
figurations with specific knots in closed random chains
play a major role in topological polymer statistics [1,2]
and in its applications to macromolecular and biological
physics [3]. Interest in the spectrum of different knots
realized in random polymer models is stimulated, e.g., by
the need for comparison with the circular DNA extracted
from some viral capsids [4,5], in the hope of identifying
specific biological mechanisms of knot formation. The low
number of globular proteins for which a knot has been
detected in the native state [6,7] marks a striking difference
with respect to the general collapsed phase of homopoly-
mers, in which a definitely higher knotting frequency is
expected. Understanding the reasons for such a difference
is certainly a key issue for the formulation of adequate
statistical models of proteins [8]. The interest in collapsed
polymers is also stimulated by the recent realization that
their knots, unlike prime knots in the good solvent case, are
on average completely delocalized along the backbone [9].
Understanding if and up to what extent topological invar-
iants can affect the globular state in such conditions is an
intriguing fundamental issue. Already in the swollen re-
gime, the problem of precisely determining the possible
dependence on topology of the free energy per monomer
and of the exponent specifying its correction / lnN=N in
the limit where the number N of monomers approaches
infinity, remains open [10,11]. This in spite of the fact that
the localized character of prime knots should represent a
simplifying feature. In the globular state, similar issues
have never been addressed, and their discussion should
include the free energy correction associated with the
existence of the globule-solvent interface [12,13].

In the present Letter, we investigate the different top-
ologies realized by the equilibrium configurations of a
collapsed ring polymer. In spite of the considerable com-
plexity of these configurations, we show that a relatively
simple statistical law governs the frequencies of the various
knots, with far reaching consequences. On one hand, it
allows us to argue the rate at which the amplitude of the
spectrum of different knot topologies grows with increas-

ing ring length. At the same time, the emerging scenario
confirms that knots are delocalized and clarifies how to-
pology controls the statistics of the globular state.

A cornerstone in topological polymer statistics has been
the realization that, for self-avoiding polygons (SAPs),
unknotted configurations are entropically disfavored, so
that their probability approaches zero exponentially with
growing chain length [11,14,15]. However, after this im-
portant step, progress in the statistical analysis of knot
complexity was hindered by the circumstance that unknot-
ted configurations in swollen, good solvent regimes remain
overwhelmingly dominant even for relatively very long
chains. On the other hand, for polymer rings in bad solvent,
the collapsed state leads us to expect a much higher proba-
bility of knotting compared to the swollen case with the
same chain length. This circumstance suggests collapsed
polymers as ideal systems for the study of how topological
complexity develops and statistically distributes itself with
growing chain length.

As a model of the large scale behavior of a long flexible
polymer in a solvent, we adopt the self-avoiding walk on
cubic lattice. Attractive energies (" � �1) between non-
consecutive nearest neighbor visited sites allow us to work
in the collapsed state at T < T�, where T� is the theta-
collapse temperature [16]. In such a regime, it is rather
difficult to sample a sufficient number of uncorrelated
polymer configurations. We use the pruned enriched
Rosenbluth method [17] (PERM), which was successfully
used also for the search of native states of protein models
[18]. Our computational problem is made heavier by the
fact that the closed chain configurations, i.e., the SAPs
generated by PERM, are only a small fraction of the total.
A more serious difficulty is the topological analysis of the
knot type present in a given closed chain configuration.
The configurations of long, collapsed SAPs are very in-
tricate geometrically, and their projections on planes
present a huge number of crossings. This makes impossible
the calculation of the topological invariants necessary for
the knot identification. In order to circumvent this diffi-
culty, we simplify each sampled configuration before per-
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forming the analysis of invariants. To this purpose, we
apply to the configuration a smoothing algorithm, which
progressively reduces the length of the chain, while keep-
ing its topology unaltered (for a similar procedure, see [5]).
This algorithm is in fact a grand-canonical simulation [19]
in which the step fugacity is fixed low enough to cause a
rapid reduction of step number in the SAP to be analyzed.
Projections of such shrunk SAP are then analyzed by the
HOMFLY polynomial in the ‘‘Knotscape’’ program [20].
Our code allows us to resolve prime knots up to 11 essen-
tial crossings and composite knots up to 5 components.

Along the above lines, we perform a systematic analysis
of the knot spectrum for N-step SAPs at T � 2:5< T�

(T� � 3:595 [21]), for chain lengths up to N � 1800. A
first result concerns the behavior of the probability P;�N�
of configurations with knot k � ;, where ; indicates the
unknot, as a function of N. Our procedure allows the
classification of almost all configurations for N up to
800, while from N � 1000 to N � 1800, we have a pro-
gressive degradation of performances, reaching a 59% of
unresolved configuration for N � 1800. There is thus an
uncertainty on the normalization needed to calculate prob-
abilities like P;�N�. The most plausible scenario is that
unresolved configurations have complex knots, especially
prime knots with more than 11 crossings or composite ones
with more than 5 prime components. They enter thus in the
statistics as ‘‘unresolved.’’ We see an exponential decay
P; � e

�N=N0 , for increasing N. The decay constant isN0 ’
420 (see Fig. 1). This value is 2 orders of magnitude
smaller than that expected for T � 1 (N0 � 2:4� 105

[14,15]), when SAP statistics is controlled by excluded
volume alone. This small N0 indicates that configurations
with knots have appreciable probability already for rela-
tively short SAPs. In a recent work on Hamiltonian loops
on the cubic lattice [22], a value of N0 & 196 was esti-
mated, about half the one we determine at T � 2:5. If we
think of Hamiltonian loops as a (T � 0)-like situation, a
lower value of N0 should indeed be expected if the trend of
N0 decreasing with T is general.

A further step was the analysis of the knot type k of each
sampled configuration and of its probability Pk�N� in the
statistics. We rank in decreasing order these probabilities,
and, by simply indicating as Pq the probability of the knot
k with rank q (q � 1; 2; 3; . . . ), we obtain the log-log plots
reported in Fig. 2. These plots correspond to increasing
numbers of sampled configurations for N � 600. All
curves display the same slope and overlap in the first
part. They only differ for the cutoff: the richer the sample,
the larger the maximum rank of the realized knots. At the
same time, upon varying sample size, we observe stability
of the rank ordering of the knots corresponding to the
initial linear parts of the plots. Thus, the estimates of
Pk�600� should not be affected by systematic errors. All
this means that the observed cutoff in rank is only due to
limited sampling and has nothing to do with the presum-
ably much higher cutoff on the spectrum of different
realizable knots due to the fact that the SAP length is finite.
The power-law behavior shown by all the plots is therefore
a robust feature of the data in this regime.

Figure 3 shows similar plots, this time for varying N and
with quite rich samples. For clarity, the effects of the
statistical cutoffs are not shown, and probabilities are
divided by the unknot probability P;�N�. The slope of
the plots is an increasing function of N. The estimates of
the slope extrapolate to a value �0:61�3� (see Fig. 3) for
N ! 1. Thus, for large N, the rank ordering statistics of
the knots obey a law of the Zipf type:

 Pq�1�=P;�1� � q�r (1)

with r � 0:6. The Zipf law was first observed in the con-
text of linguistics [23], where it rules the rank ordering in
frequency of different words in a text. Since then, it has
emerged in different fields, ranging from economics to
disordered systems [24]. For sure, the validity of such
simple law for knots in random polymers reveals a remark-
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FIG. 1. Probability of finding an unknot. The straight dashed
line represents the exponential fit with N0 � 420.

FIG. 2. Probability of rank-ordered knots for N � 600. Curves
are for sample sizes increasing as a power of 2, from 104 to 64�
104. Some simple knot topologies (unknot, 31, 41, 52, and 51) and
a more complicated one (61#10128) are also associated with their
ranking.
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able and unsuspected degree of organization of such form
of topological complexity.

The asymptotic validity of Eq. (1) with exponent r < 1
allows us to infer a fundamental property of the knot
spectrum, which at first sight would seem inaccessible to
any numerical investigation. As mentioned above, there
must be a cutoff qmax�N� for the Zipf law (1). Even if the
statistical cutoff due to finite sampling occurs at much
lower q’s, the dependence of qmax�N� on N is a key
information on the spectrum, providing a lower bound
for the maximum number of different knot topologies a
SAP of length N can host. Assuming validity of the Zipf
behavior in Eq. (1) up to q � qmax�N�, in view of the
normalization condition

P
qPq�N� � 1 valid for any N,

one easily concludes that

 1�
Xqmax�N�

q�2

q�r � q1�r
max � P;�N��1:

Thus, qmax�N� � P;�N��1=�1�r� � eN=0:4N0 . This means
that the number of different possible topologies a SAP
can host grows (at least) exponentially with N.

The validity of the law in Eq. (1) also for the asymptotic
ranking of knots is induced by some balance in the knot
frequencies, which should not diverge relative to each
other for N ! 1. For a collapsed globule in equilibrium,
theoretical arguments and numerical results suggest the
following form for the large N behavior of the canonical
partition function [12]:

 e�F=kT � Ae�Ne�1N2=3
N��2 (2)

where F is the free energy, � and �1 are reduced free
energies per monomer and per interface monomer, respec-
tively, and� is an exponent [16]. The stretched exponential
factor containing �1 clearly implies an interfacial contri-
bution to the free energy since the area of the globule-
solvent interface is expected to grow�N2=3. It is natural to

expect an asymptotic behavior of the form in Eq. (2) also
for ensembles with fixed knot topology like those consid-
ered here. The value of � could depend on the topology of
the globule in such ensembles. Indeed, in the T ! 1 case,
there are indications that the analog of � for prime knots
differs sensibly from that for composite knots [10] (as
confirmed in [11]). Dependences on topology could not
be excluded, a priori, also for parameters like � and �1.
Indeed, the equivalent of � in the T ! 1 limit for the
unknotted ring is rigorously known to be different from the
� in the ensemble with unrestricted topology [2]. On the
other hand, the � of the unknotted ring has been conjec-
tured to be the same as that of any other knotted ring for
noninteracting SAPs [10].

An analysis of ratios Pk=P; should reveal the possible
dependence of �, �1, �, and A on the knot type. These
ratios are shown in Fig. 4 as a function of 1=N for the
simplest prime and composite knots [25]. They do not
diverge. This implies that for the analyzed different knots
in the collapsed polymer ring, the parameters �, �1, and �
must be the same. In particular, unlike in the T ! 1 case,
the entropic � exponent should be the same for all knots.
On the other hand, Fig. 4 reveals that one should include a
knot-dependent subleading factor exp���k=N� in the form
of the partition function (2). The differences �k � �; are
proportional to the slopes of data sets in log-scale in Fig. 4.
These have values that essentially are determined by the
crossing number nc of the knots (see Fig. 5). For example,
�31#31

� �61
, and so on. A simple power-law increase �k �

�; � n
1:45
c fits rather well the data in Fig. 5.

We stress that for swollen polymers, there are clear
numerical evidences [10,11] of the conjecture that �k �
�; � �k, where �k is the number of prime components of
the knot. This can be explained by taking into account that
each such component is localized along the chain [9–11],
bringing an entropic factor �N to the partition function.
On the other hand, the convergence of the relative frequen-
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FIG. 4 (color online). Probability of a knot type k over the
probability of an unknot, vs 1=N, for some knots. Each ratio
converges towards an asymptotic value Ak=A;. Straight lines are
fits � exp	���k � �;�=N
.
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FIG. 3. (a) Power-law ranges of Pq�N�=P;�N�, for N � 200,
400, 500, 600, 700, 800, 1000, 1200, 1400, 1600, and 1800. For
N � 1800 also, the cutoff, due to limited sampling, is shown.
(b) Extrapolation of the exponent of the Zipf law for N ! 1.
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cies of knots to definite values rules out this picture for
collapsed polymers (�k � �;).

In summary, we have shown that a great deal of infor-
mation can be gained from a numerical investigation of
knots in collapsed polymers. The study of ratios of knot
frequencies and the established Zipf type of law for the
ranking in frequency of the knots allow us to draw very
solid conclusions concerning the universality with respect
to topology of several statistical parameters characterizing
the globules. We find that the only nonuniversal parts of the
knot frequencies relative to a reference frequency (the one
of the unknotted rings) are an asymptotic (N ! 1) knot-
dependent amplitude ratio and the rate of convergence to
this ratio, which seems to be determined only by the cross-
ing number of the knots. These results are consistent with
the expectation that knots are delocalized in the collapsed
regime [9]. The Zipf law also enables us to predict how the
spectrum of different topologies grows in amplitude with
growing ring length.
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FIG. 5 (color online). Fitted �k � �; as a function of the
minimal crossing number nc for knots 31 (nc � 3), 41 (nc �
4), 51 and 52 (nc � 5), 31#31, 61, 62, and 63 (nc � 6), and for all
knots with nc � 7. (Large circles denote averages for each nc.)
�k’s are grouped in bands corresponding to nc’s, i.e., to a good
approximation, they depend only on the number of essential
crossings of a knot type. A fit is also shown, suggesting that �k �
�; grows as a power of nc.
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