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A Haldane chain under applied field is analyzed numerically, and a clear minimum of magnetization is
observed as a function of temperature. We elucidate its origin using the effective theory near the critical
field and propose a simple method to estimate the gap from the magnetization at finite temperatures. We
also demonstrate that there exists a relation between the temperature dependence of the magnetization and
the field dependence of the spin-wave velocity. Our arguments are universal for general axially symmetric
one-dimensional spin systems.
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Discovery of the Haldane gap [1] established an impor-
tant paradigm followed by the extensive studies on gapped
spin chains. In particular, recent remarkable progress in
high magnetic-field experiments provide numerous data
on the closing of these gaps. Once the system becomes
gapless, the low-energy physics of the system is expected
to be similar to that of the intrinsically gapless S � 1=2
Heisenberg antiferromagnetic (HAF) chain. However,
there are some aspects unique to the gapless phase induced
by the applied magnetic field on the gapped spin chains,
which have not been clarified.

In this Letter, we focus on one of the most fundamental
physical quantities—magnetization—in the gapless phase
of the S � 1 Haldane chain under an applied field. We
demonstrate that, in the gapless regime slightly above the
critical field, the magnetization has a minimum as a func-
tion of temperature. Such temperature dependence follows
a universal function determined from an effective theory.
Our findings turn out to be quite universal and applicable to
general gapped one-dimensional (1D) spin systems with
axial symmetry (rotational symmetry along the magnetic-
field direction).

Many one-dimensional quantum systems in the low-
energy limit can be described by a relativistic field theory.
In particular, the relativistic free boson field theory, also
known as the Tomonaga-Luttinger liquid (TLL) theory,
applies to a wide range of gapless one-dimensional systems
including the gapless phase of the Haldane chain and the
S � 1=2 HAF chain. In a ‘‘true’’ relativistic theory, the
space and time coordinates are related by the speed of
light, a universal constant. However, when the relativistic
theory is applied to condensed-matter physics, the ‘‘speed
of light’’ is given by the velocity of collective excitations
(which is often called a spin-wave velocity in spin-chain
problems) and is, in practice, a variable. We find that the
magnetic-field dependence of the spin-wave velocity is
related to the interesting temperature dependence of the
magnetization and that it classifies the field-induced gap-
less and the intrinsically gapless phases.

The magnetization minimum discussed in this Letter
appears to be similar to the magnetization cusp originated
from the Bose-Einstein condensation (BEC) of magnons.
However, in our purely 1D case, there is no phase transition
at finite temperatures. The minimum rather represents a
nonsingular crossover from the relativistic TLL regime to
the high-temperature regime governed by the nonrelativ-
istic dispersion relation.

The Hamiltonian of the Heisenberg spin chain is

 H � J
XN
j�1

Sj � Sj�1 � h
XN
j�1

Szj; (1)

where J > 0 and N is the system size. The ground state of
the S � 1 case (the Haldane chain) at zero field is a non-
magnetic singlet state and has a finite energy gap � �
0:410J [2]. The system undergoes a quantum phase tran-
sition at finite magnetic field h � hc�� ��. The gapless
phase which appears at h > hc can be described by the
TLL [3] as in the S � 1=2 HAF chain. Therefore, one
might expect that its magnetization also follows that of
the S � 1=2 case, which is well known as the Bonner-
Fisher curve [4]. This turns out not to be the case.

The magnetization of the S � 1 gapless phase has al-
ready been studied in many articles. Hida, Imada, and
Ishikawa discussed the winding number induced by the
chemical potential in the sine-Gordon model [5], which has
a close relation to our problem. Konik and Fendley [6]
discussed the field dependence of susceptibility ��h� of the
Haldane chain on the basis of the exact solution of the
nonlinear sigma (NL�) model. However, these approaches
are not applicable to h significantly larger than the gap. The
field dependence of the magnetization was also given
numerically at several fixed values of temperature [7–9].
However, characteristic features of the temperature depen-
dence were apparently overlooked; the full systematic
understanding of the magnetization over the entire gapless
regime hc < h < hs is still lacking.

To clarify the issue, we first adopt the quantum
Monte Carlo (QMC) simulation to the S � 1 Haldane
chain under a finite field. The QMC simulation is per-
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formed for N � 512 with the maximum 1:2� 106

Monte Carlo steps using the stochastic series expansion
[10–12] code of the Algorithms and Libraries for Physics
Simulations project [13–15]. The results in the thermody-
namic limit after the finite-size scaling converges within
10�5 to the high-temperature expansion results. In the
gapped phase h < hc, we find that the magnetization de-
creases and vanishes exponentially toward T � 0 as ex-
pected. However, in the gapless phase h > hc, the
magnetizations shows a nontrivial characteristic minimum
at low temperature T � Tm, which is clearly detected
numerically as shown in Fig. 1(a). We also find that Tm
decreases toward T � 0 as h approaches hc. In the S �
1=2 case given in the inset in Fig. 1(a), the overall behavior
of M is consistent with that of the classical spin [16]. In
contrast, in the S � 1 case, such similarity with the clas-
sical case holds only at the high-temperature region. This
indicates the difference between the intrinsically gapless
S � 1=2 and the present case.

Let us discuss the characteristic behavior in Fig. 1 in
terms of the generic effective theory applicable at slightly
above the critical field h * hc. The first excited states
above a gap from a singlet ground state generally consist
of a triplet massive boson state with Sz � �1; 0, which

usually has repulsive short-range interactions. Low-energy
states of these particles may be approximated by a non-
relativistic dispersion relation:

 E�k� 	 �� k2=2m� hSz; (2)

where 1=m is a band curvature, and v0 �
�����������
�=m

p
corre-

sponds to the relativistic speed of light. In the low-energy
regime, the higher-energy Sz � 0;�1 magnons may be
ignored. On the other hand, the Sz � 1 magnon branch
intersects with the ground state at h � hc � �, a quantum
phase transition point. In the gapless regime a quasi-long-
range order appears [3]. Then the remaining Sz � 1 mag-
non in its low density limit h � hc is exactly mapped onto
the free-fermion theory with the dispersion equation (2)
[3,17,18]. The low but finite magnon density regime h *

hc is still approximated by the free fermion since the
residual interactions are only proportional to h� hc.
Here the magnetization is equal to the number of the
particles as

 

M
L
�

���������
m

2�2

r Z 1
0
d�D���f�����; (3)

where � � k2=2m, � � h��, and f����� �
�e
������� � 1��1 is the Fermi distribution function. Near
zero temperature, its temperature dependence is given by
the Sommerfeld expansion [19]. The leading term in the
expansion is / D0���T2. In one dimension, D��� / 1=

���
�
p

is monotonically decreasing so that D0���< 0. Thus, the
magnetization (3) near T � 0 must be a decreasing func-
tion of T. This implies the existence of the magnetization
minimum found in Fig. 1.

The exact integration of Eq. (3) gives

 

M
L
� �

����������
m

2��

s
Lin�1=2��e��h����; (4)

where Lin�x� �
P
1
l�1 x

l=ln is the polylogarithm function.
We show in Fig. 1(b) the actual form of Eq. (4) which
reproduces well the minimum of M found in Fig. 1(a).

The analogous mapping between the dilute boson and
the free fermion also holds at slightly below the saturation
field h & hs. In this case, the vacuum state is the fully
polarized state, and the low-lying excitations consist of
the Sz � 0 magnon branch instead of the Sz � 1 one.
Consequently, the magnetization shows a maximum cor-
responding to the minimum of the magnon density, just the
opposite to the case at h * hc. Our Monte Carlo results in
Fig. 2 are consistent with this argument.

The free-fermion description has thus succeeded in re-
producing the minimum and maximum in Figs. 1(a) and 2,
respectively. However, it is valid only slightly above hc and
below hs. On the other hand, the TLL theory should be
applicable to the whole gapless regime hc < h < hs, albeit
only in the low-energy limit. In the following, we discuss
the temperature dependence of the magnetization from the
TLL viewpoint.
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FIG. 1 (color online). (a) Temperature dependence of the
magnetization of the S � 1 Heisenberg model in the gapless
phase (h > hc) at several values of h=J � 0:45–1:5, together
with the exact susceptibility of the classical spin Hamiltonian.
The inset shows the magnetization of S � 1=2 for comparison.
The error bar of each point is much smaller than the symbol size.
(b) Free-fermion result [Eq. (4)] for h� � � 0:1, in qualitative
agreement with the results in (a).
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Conformal field theory gives the celebrated low-
temperature expansion of the free energy per unit volume
[20,21]

 f � �0 �
�c
6vF

T2 �O�T3�; (5)

where �0 is the ground state energy, vF is the excitation
velocity of a fixed point theory, and c is the central charge
(c � 1 for TLL). The derivative of the free energy with
respect to the magnetic field gives the magnetization as

 

M
L
�
M0

L
�

�

6v2
F

@vF
@h

T2 �O�T3�: (6)

The first and the second terms give the magnetization of the
ground state and the leading finite-temperature correction,
respectively. We did not discuss explicitly the effect of
irrelevant operators in its derivation. However, the leading
irrelevant operator just gives a correction of O�T2�, which
should be understood as already included in Eq. (6).
Equation (6) is, in fact, a generalization of the lowest order
Sommerfeld expansion of Eq. (3) to the interacting system.

This equation indicates that whether the magnetization
near T � 0 increases or decreases is determined by the sign
of the gradient of the velocity with respect to the magnetic
field @hvF. For the S � 1=2 Heisenberg chain, we always
have @hvF < 0 (see Fig. 9 in Ref. [22]). In contrast, the
gapless TLL regime in the present case has vF � 0 at both
end points h � hc and h � hs. This indeed gives the
characteristic behavior observed in Figs. 1(a) and 2.

To obtain the precise values of vF, we performed a
density-matrix renormalization group (DMRG) calculation
[23] on the S � 1 Haldane chain with the periodic bound-
ary condition [24]. The velocity vF as a function of the
magnetic field is extracted from a finite-size scaling analy-
sis of the energy spectra and is shown in Fig. 3. The
velocity increases rapidly just above h � hc, takes a maxi-
mum at around h � hm � J, and then decreases toward
h � hs, as anticipated. At the velocity maximum h � hm,

the leading finite-temperature correction starts fromO�T3�,
so that the magnetization becomes flat. Even when h is
away from hm, vF depends rather weakly on h for a range
of the magnetic field J & h & 2J, where magnetization
should become almost flat at low temperatures. This is
indeed consistent with what we find in Figs. 1(a) and 2.

The magnetization minimum/maximum marks the tem-
perature above which the predictions based on the TLL
picture break down. Thus, it can be interpreted as a cross-
over from the TLL with the linear dispersion to the state
governed by the nonrelativistic dispersion � / k2, as is
indicated by the arrow in Fig. 4(a).

Taking advantage of this finding, we propose a new
quantitative way to estimate the gap from Tm near the
critical field. Equation (4) takes the minimum under the
condition 2x � Lin�1=2��e

x�=Lin��1=2��e
x�, where x �

�=Tm. Its solution x � x0 � 0:762 38 yields
 Tm � x0�h� ��: (7)

The finite-temperature measurement of magnetization at
several h > hc in either experiments or numerical calcu-
lations thus provides a useful estimate of �. Since Eq. (7)
consists only of the universal constant, we can use it
without any microscopic information of the system. As a
demonstration, we show in Fig. 4(b) the comparison of our
Monte Carlo results with Eq. (7). The data asymptotically
approach to Eq. (7) when h! hc � �.

All of the data at h > hc � � in Fig. 4(b) fall below the
exact asymptotics equation (7). Such deviation is under-
stood as an effect of the repulsive interaction between the
fermions. The excitations to the higher-energy modes
should be enhanced by the interaction so that the band
curvature effect is more important than that in the free case.
Consequently, the exact value of the crossover temperature
Tm must be generally lowered compared to the estimate (7)
derived from the free-fermion theory.
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FIG. 3 (color online). Magnetic-field dependence of velocity
obtained by DMRG. The dashed line shows the free-fermion
result obtained from Eq. (3). The upper bounds of errors are 10�5

for �0 and between 10�3�h� hc� and 10�5�h� hs� for vF (see
the error bar).
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FIG. 2 (color online). Temperature dependence of the magne-
tization of the S � 1 Heisenberg model in the gapless phase near
the saturation field (h * hc � 4J) at several values of h=J �
2–3:8.
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Our argument again describes universal low-energy fea-
tures of general axially symmetric one-dimensional spin
systems, provided that the field-induced gapless phase can
be described by a single-component TLL.

The magnetization minimum has often been discussed in
terms of BEC. Although the three-dimensional (3D) BEC
observed in Ref. [25] gives a similar M-T curve to
Fig. 1(a), it differs from our case in several points; the
magnetization shows a singular cusplike minimum at the
transition temperature Tc / �h� hc�2=3 (which is possibly
smeared in actual systems due to anisotropies [26]),
whereas Tm / h� hc in our model just marks the cross-
over. The transverse magnetization is finite, namely, the
off-diagonal long-range order is present in BEC at T < Tc
but is absent in our 1D system at any temperature.

We are not aware of any experimental evidence of the
present analysis. However, there might already be some
corresponding experiments, which have been interpreted in
different inappropriate ways. Actually, the upturn of mag-
netization at low temperature found in many experiments
had been considered as a 3D effect (BEC of magnons).
However, our findings indicate that it does occur generally
in purely 1D gapped spin systems as well. Therefore, a
cautious interpretation is required for the magnetization
data. To distinguish these two scenarios, one should exam-
ine whether or not the transverse magnetization exists
below Tm as well as the presence or absence of the ther-
modynamic phase transition. In reality, the actual systems
generally have finite interchain interactions. However, the
effects described in the present Letter are observable if the
interchain interactions are sufficiently weak.
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Note added in proof.—Recently, we became aware that
the magnetization minimum was reported in numerical
calculations of the S � 1=2 two-leg spin ladder [27,28]
and possibly in an experiment on the Haldane chain [29].
The present Letter clarifies its origin and universality in
one-dimensional spin gap systems.
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FIG. 4 (color online). (a) Phase diagram for the gapped spin
chains. Dashed lines indicate the crossovers. The one between
the TLL and the quantum critical regime is given by T � h�
hc � Tm. (b) The fitting of the QMC results with Eq. (7). From
this fitting, the gap � can be estimated. The error bars come from
a discreteness of the numerical data with respect to temperature.
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