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We calculate the Hall conductivity �xy and resistivity �xy of a granular system at large tunneling
conductance gT � 1. We show that in the absence of Coulomb interaction the Hall resistivity depends
neither on the tunneling conductance nor on the intragrain disorder and is given by the classical formula
�xy � H=�n�ec�, where n� differs from the carrier density n inside the grains by a numerical coefficient
determined by the shape of the grains. The Coulomb interaction gives rise to logarithmic in temperature T
correction to �xy in the range � & T & min�gTEc; ETh�, where � is the tunneling escape rate, Ec is the
charging energy, and ETh is the Thouless energy of the grain.
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Hall resistivity (HR) of metals and semiconductors gives
very important information about their properties.
According to the classical Drude-Boltzmann theory HR

 �xy � H=�nec� (1)

does not depend on the mean free path and allows one to
experimentally determine the carrier concentration n.

Recently, much attention from both experimental and
theoretical sides has been paid to granular systems (see a
review [1], and references therein). Although various
physical quantities have been calculated in different re-
gimes, the Hall transport in the granular matter has not
been addressed theoretically yet. In this work we calculate
the Hall conductivity (HC) of a granular system and
Coulomb interaction corrections to it in the metallic re-
gime, when the intergrain tunneling conductance GT �
�2e2=@�gT is large, gT � 1 (further we set @ � 1).

Technically, calculating HC �xy appears to be more
complicated than calculating the longitudinal conductivity
(LC) �xx. The granularity of the system is ensured by the
condition that the conductance G0 � 2e2g0 of the grain is
much larger than the tunneling conductance GT , i.e., g0 �
gT . In this limit the main contribution to �xx comes from
the tunnel barriers between the grains rather than from
scattering on impurities inside the grains. In the absence
of Coulomb interaction LC equals

 ��0�xx � GTa2�d; (2)

where a is the size of the grains and d is the dimensionality
of the array. Therefore, when studying longitudinal trans-
port one can neglect the properties of electron dynamics
inside the grains, which simplifies calculations signifi-
cantly. On the contrary, for Hall transport one is forced to
take the intragrain dynamics into account, since the Hall
current originates from the transversal drift in the crossed
magnetic and electric fields inside the grains.

As we find in this work, the intragrain electron dynamics
can be included within the diagrammatic approach by
considering nonzero (coordinate-dependent) diffusion

modes inside the grain. This procedure accounts for the
finiteness of the ratio gT=g0 and allows one, in principle, to
study both LC and HC of the granular system for arbitrary
ratio gT=g0. The obtained results reproduce the solution of
the classical electrodynamics problem for a granular me-
dium [e.g., the formula ��0�xx � a2�dGTG0=�GT �G0� can
be obtained as a series in gT=g0]. Quantum effects of
Coulomb interaction and weak localization may be incor-
porated into this scheme afterwards.

We perform calculations for magnetic fields H such that
!H�0 � 1, where !H � eH=mc is the cyclotron fre-
quency and �0 is the electron scattering time inside the
grain. Since the effective mean free path l � vF�0 & a
does not exceed the grain size a, and typically a 	
10–100 nm, the condition !H�0 � 1 is well fulfilled for
all experimentally available fields H.

Let us list the main results of this work. First, we neglect
Coulomb interaction completely and obtain for HC in the
lowest nonvanishing order in gT=g0 � 1:

 ��0�xy � G2
TRHa

2�d; (3)

where RH is the classical Hall resistance of a single grain
[see Fig. 1 (right)]. This result obtained by diagrammatic
methods is completely classical provided the tunneling
contact is viewed as a surface resistor with conductance
GT . The HR of the system, following from Eqs. (2) and (3),

 ��0�xy � RHad�2 � H=�n�ec� (4)

does not depend on the tunneling conductance GT and is
given by the Hall resistance of a single grain RH, which
depends on the geometry of the grain but not on the intra-
grain disorder. Equation (4) defines the effective carrier
density n� of the granular medium. For a three-dimensional
(d � 3, many granular monolayers) array n� � An differs
from the electron density n in the grain by a numerical
factor A 
 1, determined by the grain geometry [2]. For
grains of a simple geometry this factor is given by the ratio
of the largest cross section area S to the cross section area
of the lattice cell a2: A � S=a2. So, A � 1 for cubic grains
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(S � a2), A � �=4 for spherical grains (S � �a2=4). For
a two-dimensional (d � 2, single granular monolayer)
array the 3D density must be multiplied by the thickness
of the layer a: n� � aAn.

Next, we calculate the first-order corrections to HC ��0�xy
[Eq. (3)] due to Coulomb interaction at temperatures T *

� exceeding the tunneling escape rate � � gT� (� is the
mean level spacing of the grain). Significant T-dependent
corrections exist in the range � & T & gTEc [Ec �
e2=��a� is the charging energy], whereas for T * gTEc
the relative corrections are of the order of 1=gT or smaller.
We find two different contributions to HC:

 �xy � ��0�xy � ��
�1�
xy � ��

�2�
xy : (5)

One of them, ���1�xy , can be attributed to the renormaliza-
tion of individual tunneling conductances GT (tunneling
anomaly [3–5]) in a granular medium and has the form

 

���1�xy

��0�xy
� �

1

�gTd
ln
gTEc
T

: (6)

The other one, ���2�xy , involves virtual electron diffusion
(VD) through the grain (that is why it is suppressed at T
greater than the Thouless energy ETh of the grain):

 

���2�xy

��0�xy
�

cd
4�gT

ln
�

min�gTEc; ETh�

T

�
; (7)

where cd is a numerical lattice factor (16). Both corrections
���1�xy and ���2�xy arise from spatial scales of the order of the
grain size a and are specific for granular systems and ab-
sent in homogeneously disordered metals (HDMs). In es-
sence, they are due to strong discrepancy of time scales of

the intergrain and intragrain electron dynamics described
by the condition gT � g0 or, equivalently, �� ETh.

Since the correction ���1�xy merely renormalizes the con-
ductance GT in Eq. (3), it does not affect HR �xy �
�xy=�2

xx. Indeed, the correction (6) is canceled by the
corresponding logarithmic correction to �xx [1,6,7], de-
scribing renormalization of GT in Eq. (2). Therefore the
total correction ��xy to HR �xy � ��0�xy � ��xy is due to the
VD effect [Eq. (7)] only and HR equals

 �xy�T� �
H
n�ec

�
1�

cd
4�gT

ln
�

min�gTEc; ETh�

T

��
: (8)

Summarizing, the Hall resistivity �xy [Eq. (8)] of a
granular metal at temperatures T * min�gTEc; ETh� is
given by Eq. (4) and is independent of the intragrain and
tunnel contact disorder. Measuring �xy at such T and using
Eq. (4) one can extract an important characteristic of the
granular system: its effective carrier density n�. At tem-
peratures � & T & min�gTEc; ETh� Coulomb interaction
leads to lnT-dependent correction to �xy. Comparison of
Eqs. (4)–(8) with experimental data may serve as a good
check of the theory developed here. Unfortunately, the
known to us experimental papers (Refs. [8]) on conven-
tional Hall effect in granular materials mostly deal with the
systems in the regime of low tunneling conductance gT &

1, opposite to the metallic regime gT � 1 studied by us,
which does not allow us to make a detailed comparison
now. We mention that our theory may also be applied to
indium tin oxide materials (see, e.g., Refs. [9]). Another
related effect is the anomalous Hall effect in ferromagnetic
granular materials [10].

Now we briefly outline the model and method used to
derive the announced results; details of our calculations
will be presented elsewhere [11]. We consider a quadratic
(d � 2) or cubic (d � 3) lattice of identical (in form and
size) grains coupled to each other by tunnel contacts
(Fig. 1). To simplify the calculations we assume the intra-
grain electron dynamics diffusive, l� a. However, our
results are also valid for ballistic (l� a) intragrain disor-
der. In the metallic regime (gT � 1) Coulomb interaction
effects can be considered as a perturbation.

We write the Hamiltonian describing the system as

 Ĥ � Ĥ0 � Ĥt � Ĥc:

 Ĥ 0 �
X

i

Z
dri 

y�ri�f��pi � �e=c�A�ri�
 �U�ri�g �ri�

is the electron Hamiltonian of isolated grains,  �ri� are the
fermionic operators of the electrons, ��p� � p2=�2m� �
�F, A�ri� is the vector potential describing uniform mag-
netic field H � Hez,U�ri� is the random disorder potential
of the grains, i � �i1; . . . ; id� is an integer vector numerat-
ing the grains. Disorder average is performed using
Gaussian distribution with the variance hU�ri�U�r0i�iU �
�1=2�	�0���ri � r0i�, where 	 is the density of states in the
grain at the Fermi level per one spin direction. Further, the

FIG. 1. Left: Diagrams for the Hall conductivity ��0�xy of the
granular system [Eq. (14)]. The diffuson �D% connecting contact
s1 to s0 is shown. External tunneling vertices (wavy lines) must
be attached in 4 possible ways. Three more diffusons
�D&; �D.; �D- connecting contacts s2; s3; s4 to s0, respectively,

must also be taken into account. Right: Classical picture of Hall
conductivity of a granular system. The current Iy � GTVy run-
ning through the grain in the y direction causes the Hall voltage
drop VH � RHIy between its opposite banks in the x direction,
which is also applied to the contacts (the total voltage drop per
lattice period in the x direction is 0) giving the Hall current Ix �
GTVH � G2

TRHVy [Eq. (3)].
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tunneling Hamiltonian is given by
 

Ĥt �
X
hi;ji

�Xij � Xji�;

Xij �
Z
dsidsjt�si; sj� 

y�si� �sj�;

the summation is taken over the neighboring grains con-
nected by a tunnel contact, and the integration is done
over two surfaces of the contact. Gaussian distribution
of tunneling amplitudes t�si; sj� with the variance
ht�si; sj�t�sj; si�it � t20��si � sj� [��si � sj� is a � func-
tion on the contact surface, t20 has the meaning of tunneling
probability per unit area of the contact] models inevitable
irregularities of the contacts. The Coulomb interaction can
be taken in the form (see, e.g., Ref. [12])

 Ĥ c �
e2

2

X
i;j

ni�C
�1�ijnj;

where ni �
R
dri y�ri� �ri� � �ni is the excess number of

electrons in the ith grain ( �ni is the number of electrons in a
neutral grain) and Cij is the capacitance matrix.

The conductivity is calculated using the Kubo formula:

 �ab�!��2e2a2�d 1

j!j

X
j

��ab�!;i�j���ab�0;i�j�
;

(9)

where ! 2 2�TZ is a bosonic Matsubara frequency (Z is
a set of integers), a and b are the lattice unit vectors,

 �ab�!; i� j� �
Z 1=T

0
d�ei!�hT�Ii;a���Ij;b�0�i (10)

is the current-current correlator, Ii;a��� � Xi�a;i��� �
Xi;i�a���, the thermodynamic average h� � �i is taken with
Ĥ, and A��� � eĤ�Ae�Ĥ� is the Heisenberg operator.

We calculate �ab�!� using diagrammatic technique. Let
us first neglect Coulomb interaction Ĥc. Technically, one
expands Eq. (10) both in the disorder potential U�ri� and
the tunnelling Hamiltonian Ĥt and averages over the intra-
grain and contact disorder.

The intragrain electron motion is described by the dif-
fusion propagator (diffuson) of a single isolated grain,
 

D�!; r; r0� �
1

2�	
hG�"�!; r; r0�G�"; r0; r�iU;

�"�!�" < 0;

given by the disorder-averaged product of two Green
functions G (" is the fermionic Matsubara frequency). In
the presence of magnetic field (!H�0 � 1) this propagator
satisfies the equation (from now on ! � 0)

 �!�D0r
2
r�D�!; r; r0� � ��r� r0� (11)

and the boundary condition at the grain surface

 �n;rrD�jr2S � !H�0�t;rrD�jr2S: (12)

Here, D0 � vFl=3 is the diffusion coefficient in the grain

(vF is the Fermi velocity), n is the normal unit vector
pointing outside the grain, t � �n;H
=H is the tangent
vector pointing in the direction opposite to the edge drift.
Equation (12) is due to the fact that the current component
normal to the grain surface vanishes, its right-hand side
describes the edge drift caused by the magnetic part of the
Lorentz force. The solution to Eqs. (11) and (12) can be
written as

 D�!; r; r0� �
1

!V
�
X
n>0


n�r�
�n�r0�
!� �n

; (13)

where 
n are the eigenfunctions of the problem

 �D0r
2
r
n � �n
n;

�n;rr
n�jS � !H�0�t;rr
n�jS:

There always exists a uniform solution 
0�r� � 1=
������
V
p

(V is the grain volume) with the zero eigenvalue �0 � 0
giving the zero mode 1=�!V � in Eq. (13).

Diagrammatically, in order to obtain HC in the lowest
nonvanishing in gT=g0 � 1 order one has to connect the
contacts in the x and y directions by the diffusons of a
single grain, as shown in Fig. 1 (left). Doing so, we get

 ��0�xy �!� � 2e2a2�d g
2
T

	
� �D% � �D& � �D. � �D-�; (14)

where gT � 2��	t0�2S0 is the conductance of a tunnel
contact, S0 is the area of the contact, �D� � �1=S2

0��R
ds0dsa �D�s0; sa�, a � 1; 2; 3; 4 for � �%;&;.;- , re-

spectively [Fig. 1 (left)]. Here,

 

�D�r; r0� �
X
n>0


n�r�
�n�r0�=�n

is the diffuson without the zero mode at ! � 0, satisfying
Eqs. (11) and (12) with ! � 0 [13]. Retaining only the
zero mode in Eq. (13) would give just 0 in Eq. (14), and we
are forced to take all nonzero modes into account. Thus,
considering nonzero diffusion modes for the Hall effect is
inevitable. Equation (14) is nonzero for H � 0 since the
edge trajectories for �D% � �D. are shorter (if e > 0 is
assumed) than those for �D& � �D-, and therefore �D% �
�D& � �D. � �D- > 0.

In fact, the result Eq. (14) is purely classical, provided
one treats the tunnel contact as a surface resistor with the
conductance GT . Indeed, the classical HC of the granular
medium can be easily presented in the form of Eq. (3)
[Fig. 1 (right)]. The Hall resistance RH of the grain is
defined via the difference (Hall voltage) of electric poten-
tial ’�r� between the opposite banks of the grain, VH �
’�sr� � ’�sl� � RHIy, when the current Iy � I passes
through the grain. The current density j�r� � ��̂0r’�r�
(�̂0 is the conductivity tensor) satisfies the continuity
equation divj � q�r� and the boundary condition
�n; j�jS � 0. The charge source function q�r� is nonzero
on the contact’s surface only and

R
dsdq�sd� �

�
R
dsuq�su� � I. Therefore ’�r� satisfies

 �r2
r’�q�r�=�

gr
xx; �n;r’�jS�!H�0�t;r’�jS: (15)
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Comparing Eq. (15) with Eqs. (11) and (12) we see that
�D�r; r0� is a Green function for the problem (15). Thus the

solution to Eq. (15) is

 ’�r� �
1

	
I
S0

�Z
dsd �D�r; sd� �

Z
dsu �D�r; su�

�
;

and Eq. (14) leads to Eq. (3) (Einstein relation �gr
xx �

2e2	D0 was used). This establishes the correspondence
between our diagrammatic approach of considering non-
zero diffusion modes and the solution of the classical
electrodynamics problem for the granular system.

Luckily, for simple geometries (cubic, spherical) of the
grain the Hall resistance RH can be obtained from symme-
try arguments without solving the problem Eq. (15). In
such cases the Hall voltage equals VH � �gr

xyaI=S, where S
is the area of the largest cross section of the grain and
�gr
xy � H=�nec� is the specific HR of the grain material

expressed in terms of the carrier density n inside the grain.
Therefore, RH � �gr

xya=S and the HR of the granular me-
dium can be expressed in the form of Eq. (4), where n� �
ad�3An, A � S=a2 
 1. The quantity n� defines the effec-
tive carrier density of the system.

Our diagrammatic approach allows us to incorporate
quantum effects of Coulomb interaction on Hall conduc-
tivity into the developed scheme. We omit details here
leaving them for a more comprehensive version [11]. We
consider the range of not very low temperatures T * �,
where we can neglect the large-scale (‘‘Altshuler-
Aronov’’) contributions analogous to those for HDMs
[3]. We find that in this regime in the first order in the
screened Coulomb interaction two contributions (i � 1; 2)
exist:
 

���i�xy�!� � 2e2a2�d g
2
T

!	

�
X
n>0

�fn;% � fn;& � fn;. � fn;-�

�i�
n �!�;

where fn;� � �1=S2
0�
R
ds0dsa
n�s0�
�n�sa�, a � 1; 2; 3; 4

for � �%;&;.;- , respectively [Fig. 1 (left)], and

 
�1�n �!� � �8�2��T2
X0

�

�V0��� � V1���
=��2�n�;


�2�n �!� � 2�2��T2
X0

�

V0��� � V2��� � 2V1���

�!��� �n��
2 :

Here, 2�T
P0
�
F��� �

P
0<�
!�F��� �

P
!<�!F���

(� 2 2�TZ), V0 � V�i; i�, V1 � V�i� ex; i�, V2�V�i�
ex�ey;i� are components of the screened Coulomb inter-
action V��; i; j� �

R
�adddq=�2��d
eiaq�i�j�V��;q� with

 V��;q� � Ec�q�=�1� 2Ec�q��q=��j�j�
;

and �q � 2�
P
��1� cosq�a�, Ec�q� �P

ie
�iaq�i�j�e2�C�1�i�j (q 2 ���=a; �=a
d, � � x, y for

d � 2 and � � x, y, z for d � 3). The contribution ���1�xy
renormalizes individual tunneling conductances GT in
Eq. (3), whereas the contribution ���2�xy is due to the virtual

electron diffusion though the grain [note the diffuson
1=�!��� �n� of the grain in the expression for 
�2�n ].
The large logarithms in 
�1�n �!� and 
�2�n �!� come from
frequencies � & gTEc, for which the Coulomb potential is
completely screened: V��;q� � �j�j=�2�q�. Performing

analytical continuation and extracting ��0�xy with the help of
Eq. (14) we arrive at Eqs. (6) and (7) with

 cd �
Z adddq
�2��d

�1� cosqxa��1� cosqya�P
�
�1� cosq�a�

: (16)

In conclusion, we presented the theory of the Hall effect
in granular metals. We have shown that at high enough
temperatures the Hall resistivity is given by a classical
expression, from which one can extract the effective carrier
density of the system. At lower temperatures charging
effects give a logarithmic temperature dependence of the
Hall resistivity. We hope that our predictions may be rather
easily checked experimentally.
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