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Capillary Rise in Nanopores: Molecular Dynamics Evidence for the Lucas-Washburn Equation
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When a capillary is inserted into a liquid, the liquid will rapidly flow into it. This phenomenon, well
studied and understood on the macroscale, is investigated by molecular dynamics simulations for coarse-
grained models of nanotubes. Both a simple Lennard-Jones fluid and a model for a polymer melt are
considered. In both cases after a transient period (of a few nanoseconds) the meniscus rises according to a
(time)'/2 law. For the polymer melt, however, we find that the capillary flow exhibits a slip length &,
comparable in size with the nanotube radius R. We show that a consistent description of the imbibition
process in nanotubes is only possible upon modification of the Lucas-Washburn law which takes explicitly
into account the slip length 6. We also demonstrate that the velocity field of the rising fluid close to the

interface is not a simple diffusive spreading.
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Introduction.—Understanding fluid flow on the nano-
scale [1] is crucial for modern developments of nanotech-
nology like the “lab on a chip” and related nanofluidic
devices, as well as for various applications of porous
materials, fluid flow through pores in biomembranes, etc.
A key process is the ability of fluids to penetrate into
fine pores with wettable walls. Filling hollow carbon nano-
tubes or alumina nanopore arrays with chosen materials
opens exciting possibilities to generate nearly one-
dimensional nanostructures [2,3]. In this context, also the
filling of silicon dioxide nanochannels [4] and of rolled-up
InAs/GaAs tubes [5] has found great interest. Related fluid
filling phenomena occur when viscous fluid fronts propa-
gate into porous media by spontaneous imbibition [6]. On
macroscopic scales, a basic understanding of such capil-
lary rise processes has existed for almost a century [7-12].
However, the applicability of the resulting concepts on the
nanoscale has been the subject of a recent controversy [13—
15]. In particular, the conditions under which the Lucas-
Washburn equation [7,8] holds are debated. This equation
predicts a 1/t law for the rise of the fluid meniscus H(7) in
the capillary with time ¢,

H() = (M)lﬂﬁ (1)
n

Here y; v is the surface tension of the liquid, 7 its shear
viscosity, R the pore radius, and 6 the contact angle be-
tween the meniscus and the wall. Equation (1) follows by
integration of the differential equation, describing steady
state flow, where the capillary force 27y;y cos(#)/R is bal-
anced by the viscous drag 4nd[H(t)/R]?/dt and one as-
sumes that any possible slip length 6§ << R. Of course,
Eq. (1) cannot be true for  — 0, but can hold only after
a (nanoscopically small) [16] transient time [Zhmud et al.
[11] suggest an initial behavior H(¢) = > when the liquid is
accelerated by the capillary forces]. However, Mastic et al.
[13] find H(¢) rising slower than linear with time, even for
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t = 1 ns, from molecular dynamics (MD) simulation of a
simple Lennard-Jones (LJ) fluid. They suggest to slightly
correct Eq. (1), replacing @ by a dynamic contact angle
0(z). In contrast, a study of a model for decane molecules in
a carbon nanotube [14,15] yielded a simple linear behavior
H(t) « t over a wide range of times, leading to the con-
clusion that filling of nanotubes by fluids does not obey the
Lucas-Washburn equation. While experiments dealing
with pores that are at least 1 um wide [17] are inconclu-
sive on this issue, a recent study using nanopores supports
the validity of the /f law [18]. Moreover, in narrow nano-
tubes an eventual slip at the hydrodynamic boundaries
might affect the balance of forces by reducing the viscous
drag at the tube wall.

The aim of the present Letter is to help in clarifying the
problem of capillary filling in narrow nanotubes. We
present simulations of a generic model, varying both the
fluid-wall interaction and the nature of the fluid (simple LJ
particles vs melt of short polymer chains, respectively).
Providing independent estimates for all the parameters
entering Eq. (1), we are able to perform a decisive test of
Eq. (1). Since a fluid flowing into a capillary is a nonequi-
librium process, we avoid the use of a strictly ‘““micro-
canonical protocol” of our MD simulations, unlike
[14,15]. Using a dissipative particle dynamics (DPD) ther-
mostat [19], which does not disturb the hydrodynamic
interactions due to its Galilean invariance, we maintain
strict isothermal conditions, in spite of the heat produced
due to the friction of the flowing fluid. In the real system,
the walls of the nanofluidic device would achieve the
thermostating, of course.

Model description.—The snapshot picture, Fig. 1, illus-
trates our simulation geometry. We consider a cylindrical
nanotube of radius R = 10, whereby the capillary walls are
represented by atoms forming a triangular lattice with
lattice constant 1.0 in units of the liquid atom diameter
o. The wall atoms may fluctuate around their equilibrium
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FIG. 1 (color online). Snapshot of fluid imbibition in a capil-
lary at time ¢t = 1300 MD steps after the onset of the process.
Fluid atoms are shown in blue (medium gray), those of the
precursor film are in light blue (light gray). The tube wall is
shown in red (dark gray), and the atoms of the reservoir adhesive
wall are in yellow (gray). For further explanations see text

positions at R + o, subject to a finitely extensible non-
linear elastic (FENE) potential Upgng = —15€,,R3 In(1 —
r?/R3), Ry =1.5. Here €, = 1.0kgT, kz denotes the
Boltzmann constant, and T is the temperature of the sys-
tem. In addition, the wall atoms interact by a LJ potential,
ULJ(r) = 4Eww[(0-ww/r)12 - (a-ww/r)6]’ where €ww = 1.0
and o,,, = 0.8. This choice of interactions guarantees no
penetration of liquid particles through the wall while at the
same time the wall atoms mobility corresponds to the
system temperature. In all our studies we use a capillary
length H,,, = 55. The right end of the capillary is closed
by a hypothetic impenetrable wall which prevents liquid
atoms escaping from the tube. At its left end the capillary is
attached to a rectangular 40 X 40 reservoir for the liquid
with periodic boundaries perpendicular to the tube axis.
Although the liquid particles may move freely between the
reservoir and the capillary tube, initially, with the capillary
walls being taken distinctly lyophobic, these particles stay
in the reservoir as a thick liquid film which sticks to the
reservoir lyophilic right wall. The film is in equilibrium
with its vapor both in the tube as well as in the left part of
the reservoir. At a time 7= 0, set to be the onset of
capillary filling, we switch the lyophobic wall-liquid inter-
actions into lyophilic ones and the fluid enters the tube.
Then we perform measurements of the structural and ki-
netic properties of the imbibition process at equal intervals
of time. As a simulation algorithm we use the velocity-
Verlet algorithm [20] and DPD thermostat [19,21] with
friction parameter ¢ = 0.5, Heaviside-type weight func-
tions, and a thermostat cutoff r. = 2.5¢. The integration

time step 6t = 0.01¢y where ¢, is our basic time unit, #, =

Jma?/48kyT = 1/+/48, choosing the particle mass m =
1 and k3T = 1.

The capillary filling is studied for two basic cases: (i) a
simple fluid interacting via LJ potential with € = 1.4 and
o = 1.0, and (ii) a non-Newtonian fluid (a polymer melt)
consisting of short chains of length N = 10. The non-

bonded interaction is given by a LJ potential with € =
1.4 and o = 1.0, whereas the bonded forces between chain
monomers result from a combination of FENE and LJ
potentials with € = 1.0 [22]. In both cases the liquid-
wall interaction is given by a LJ potential with strength
€,1 which is varied over a broad range so as to change the
wetting characteristics of the system. All interactions are
cut off at r,,, = 2.50. By varying the interaction strengths
and the thermostat parameters, one can change the dy-
namic properties of the test fluids in a wide range. The
total number of liquid particles is 25000, while those
forming the tube are 3243.

Simulation results.—Typical data for the time evolution
of the advancing front of the LJ fluid penetrating into the
pore are shown in Fig. 2. Choosing a constant time interval
(Afr = 300) between subsequent profiles in Fig. 2, it is
already obvious that the interface position advances into
the capillary slower than linear with time. The profiles p(z)
at late times become distinctly nonzero far ahead of the
interface position (near the right wall at z = 55 where the
capillary ends), due to a fluid monolayer attached to the
wall of the capillary: this precursor advances faster then the
fluid meniscus in the pore center, but also with a 1/t law
(see below).

Figure 3(a) shows that the time evolution of the menis-
cus height H(z) depends very sensitively on the strength of
the wall-fluid interaction (or the contact angle 6, respec-
tively): for ews = 0.6 and 0.8 only a small number of fluid
particles enter the capillary (since 8 > 90 for these choices
[18]). For ews = 1.2, however, there is only a short tran-
sient up to about ¢ = 2501, (i.e., a time still in the nano-
second range), and then a behavior compatible with Eq. (1)
is verified. The initial deviation from this law seen in Fig. 3
is not related to the ‘“‘dynamic contact angle” [13]: this
would produce a curvature of opposite sign in Fig. 3.
However, in the marginal case eyw; = 1.0 a pronounced
deviation from Eq. (1) occurs: this curve could be (ap-
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FIG. 2 (color online). Profiles of the average fluid density p(z)
in the capillary at various times for the case €,; = 1.4, € = 1.4.
The small oscillations reflect the corrugated structure of the wall
of the capillary.
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FIG. 3 (color online). Position of the liquid meniscus H(t) for
a LJ fluid (a), and a melt of decanes (b), for various choices of
€. The straight lines in (a) full line, and in (b) dashed line,
indicate the asymptotic law, Eq. (1), in the case of complete
wetting. The topmost dash-dotted curve indicates H(¢) for the
precursor foot (calculated from the total number of particles in
the first layer adjacent to the wall of the tube). The initial rise of
the precursor (for # = 100¢,) proceeds much faster, however. The
inset in (b) shows the radial velocity variation in a steady flow
regime for two strengths of applied external force g = 0.02 and
g = 0.05 (see text) clearly indicating a slip length 6 = 2.7.

proximately) fitted to a linear relation, H(r) o . It is pos-
sible that the results of Supple and Quirke [14,15] just
correspond to such a marginal case. Finally, we emphasize
that even the height of the precursor foot [topmost curve in
Fig. 3(a)] advances with a H(z) « /t law.

To test whether the capillary rise behavior of polymers
differs from that of Newtonian fluids, the penetration of a
melt of short flexible polymers [above model (ii)] is shown
in Fig. 3(b). But apart from a general slowing down (at-
tributable to the higher viscosity of the polymer melt), the
behavior exhibits the same /7 law.

We have also tested whether the results are affected by
possible simulation artifacts due to insufficient thermostat-
ing conditions. In fact, a slower capillary rise occurs if one
uses a “‘Langevin thermostat” (i.e., an ordinary friction
and random noise term acting on all particles), which
violates hydrodynamics [23]. A similar result applies if

the wall atoms are rigid rather than mobile [18]. But even
in these cases the data still follow the /¢ law, and also
changing details such as the above parameters chosen for
the FENE potential of the wall atoms does not matter. From
the velocity profiles near the moving meniscus Fig. 4 it is
evident that care is needed for the temperature equilibra-
tion of such nonequilibrium MD simulations of transient
phenomena. The flow is laminar behind the interface,
parallel to the walls of the capillary, with the velocity
largest in the tube center and going to zero close to the
walls. Thus our simple fluid exhibits evidently stick bound-
ary conditions. However, in the interface the velocity field
bends over into a direction along the interface, and occa-
sionally particles evaporate into the gas region. This flow
pattern shows that the H(f) « 1/t must not be confused with
a simple diffusive spreading, of course.

Comparison with the Lucas-Washburn equation.—For a
test of Eq. (1), it is crucial to also estimate the prefactor, of
course, to prove that the 1/t growth is not just a mere
coincidence. Following Ref. [24], for the LJ fluid (at
density p, = 0.774) we find n = 6.34 = 0.15, for the
polymer melt (at p, = 1.043) the result is n =
205 £ 25. We derived compatible values for the viscosity
of both fluids also within an equilibrium molecular dynam-
ics simulation by using the correlation function of off-
diagonal pressure tensor components and the standard
Kubo relation [20]. From the flat gas-liquid interface ob-
served in the left part of our simulation box (Fig. 1) we can
estimate the surface tension vy, from the anisotropy of the

-10 i
0 10

’ 3
B A
5 : L E
&\\\/\f . =
T\ N \/((/{",
z PEMPATEIEN -
NS AT ©
ACASIIAATINIE I =
ANV I IV
MM IS
‘5'\/\'?';"/;;5’?4(/?;’712’/‘7“
%(\/rﬂ(«({ﬁfft{’:i'
ST
aaiRRRRERARES2NRNE
2 4 }’6 8

FIG. 4 (color online). Velocity field around the moving me-
niscus for €, = 1.4. Velocities are averaged within a two-
dimensional grid, always fixed at z = 0 to the actual moving
meniscus position and renormalized according to the current
meniscus speed. The inset shows the LJ-fluid density profile in
the vicinity of the meniscus. The interface position is denoted by
a yellow (or gray) line.
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pressure  tensor [25], Yew = [dZ{pzz(Z) - [Pxx(z) +
pyy(2)]/2}. This yields vy, = 0.735 = 0.015 (LJ) and
1.715 = 0.025 (polymer), respectively.

A consistency check of our results with Eq. (1) is
performed for the case of complete wetting, cos(f) = 1,
which corresponds to €,; = 1.4 where the data practically
collapse on a single curve. For the simple LJ fluid with the
tube radius R = 10 one obtains a slope H(1)//t = 0.76 *+
0.02 which agrees perfectly with the measured meniscus
velocity cf. Fig. 3(a). For the polymer melt, in contrast,
Eq. (1) predicts a slope of 0.20 which is considerably less
than the observed slopes in Fig. 3(b). To clarify this dis-
crepancy we performed MD simulations of steady state
Poiseuille flow of identical melt subject to external force g
comparable to the capillary driving force. The radial varia-
tion of axial velocity indicates a clear slip-flow behavior,
cf. inset in Fig. 3(b), with a slip length of 6 =~ 2.7 which
cannot be neglected when compared to the tube radius R =
10. The importance of slip length in processes in the nano-
scale range has been emphasized earlier by Barrat and
Bocquet [26]. In the present case the existence of a
slip length & can be easily accounted for in the Lucas-
Washburn result, Eq. (1), if one notes that, according to the
definition of a slip length, the drag force under slip-flow
conditions in a tube of radius R and slip length & is equal
to the viscous drag force for a no-slip flow in a tube of
effective radius R + &, that is, to 4nd[H(t)/(R + 8)]*/dt.
In both cases the capillary driving force remains un-
changed, 2vycos(f)/R. Thus one derives a modified
Lucas-Washburn relationship:

2
H() = ['yLV(RZ—;i) cos0:|1/2\/;. @

Using Eq. (2), and the material constants given above, we
obtain for the slope H(t)/+/t = 0.26 = 0.02 which agrees
within error bars with the observations in Fig. 3(b). In a
different context, the importance of slip flow in nanopores
was postulated already long ago [27].

Conclusions.—In summary, we have shown that basic
concepts of capillarity such as the Lucas-Washburn equa-
tion, Eq. (1), work almost quantitatively even at the nano-
scale, both for small molecule fluids and complex fluids
such as short polymer chains. In the case of slip flow,
however, we suggest a simple modification which takes
into account the slip length 6. Our new result, Eq. (2),
restores the consistency of the Lucas-Washburn law within
the framework of the general / law even in those cases
when slip flow cannot be neglected.
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