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Slow Dynamics in a Turbulent von Karman Swirling Flow
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An experimental study of a turbulent von Karman flow in a cylinder is presented. The mean flow is
stationary up to a Reynolds number Re = 10* where a bifurcation takes place. The new regime breaks
some symmetries of the problem and becomes time dependent because of equatorial vortices moving with
a precession movement. In the exact counterrotating case, a bistable regime appears and spontaneous
reversals of the azimuthal velocity are registered. A three-well potential model with additive noise
reproduces this dynamic. A regime of periodic response is observed when a very weak forcing is applied.
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Introduction.—Turbulent flows are ubiquitous in nature;
ranging from small scales (heart valves, turbulent mixing)
to very large scales (clouds, tornadoes, oceans, earth man-
tle, the sun, and other astrophysical problems), turbulence
is present in many applied and fundamental physical prob-
lems [1]. But, in spite of the attention it has received, there
are still many open questions: the emergence of coherent
structures, as vortices, in fully developed turbulence or the
rise of different bifurcations on the mean flow [2].

Here we will analyze a particular configuration, the
von Karman swirling flow, where two different propellers
are rotating inside a cylindrical cavity. These flows have
been studied analytically [3,4], numerically [5-7], and
experimentally [8—10]. Recently it has been shown that
they can present multistability and memory effects [11].
Thus, this configuration is a natural candidate to study the
instabilities that appear in fully developed turbulence and
the role played by symmetry breaking and coherent struc-
tures. They have been also used in magnetohydrodynamics
(MHD) experiments looking for the dynamo action with
recent successful results [12] and with a very rich dynam-
ics of the magnetic field [13]. Because of turbulence, the
whole MHD problem cannot be studied numerically: a
usual approach is to deal with stationary mean flows in
the so-called kinematic dynamo scheme. Although these
numerical studies have been used to predict thresholds of
the dynamo action [14-16], real flows can present slow
dynamics compared to the magnetic diffusion time that
cannot be neglected and should be taken into account in the
numerical codes.

In this Letter we will focus on the slow dynamics that
appear for very large Reynolds (Re) numbers. The flow
presents a nontrivial alternation between two states that
break symmetries of the problem. These dynamics, which
can be assimilated to a Langevin system, present a classical
exponential escape time and forced periodic response.

Experimental setup.—The experimental volume (Fig. 1)
is a closed, horizontal cylinder whose diameter D = 2R =
20 cm is fixed while the height H can be modified con-
tinuously. Two propellers are placed at both ends, with

radius R, = 8.75 cm and 10 curved blades, each blade
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PACS numbers: 05.45.—a, 47.27.—1i, 47.32.—y, 47.65.—d

with a height of 2 cm and a curvature radius of 5.0 cm.
Using the standard cylindrical coordinate system, the north
N (respectively, south S) propeller placed at z = H/2
(respectively, z = —H/2) has negative (positive) azimu-
thal velocity. The propellers are impelled by two indepen-
dent motors of 3 kW total power, allowing a rotation
frequency in the range f = 0-20 Hz. The frequency of
the motors is controlled with a waveform function genera-
tor and a proportional-integral-derivative (PID) servo loop
control. The cylinder is placed inside a tank of 150 I of
volume in order to avoid optical problems and to assure the
temperature stability. The fluid used is water at 21 °C.
The measurement of the velocity field is performed
using a laser Doppler velocimetry (LDV) system (with a
chosen spatial resolution of 1 cm and temporal resolution
up to 100 kHz) and a particle image velocimetry (PIV)
system (spatial resolution of 1 mm and temporal resolution
of 15 Hz). The LDV system allows the measurement of two
components of the velocity field (axial v, and azimuthal
vy), while the radial component (v,) is obtained by mass
conservation. The velocity field obtained in this way is
consistent with the PIV measurements in an axial, hori-
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FIG. 1. Experimental setup. (a) Horizontal cylinder with the
propellers, inside the tank. The north propeller is at z = H/2 and
the south is at z = —H/2. (b) Photograph of the propeller.
(c) Scheme of the south propeller viewed from the equatorial
plane. The rotation sense with the convex side sets the azimuthal
velocity as positive.
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zontal plane (6 = 0). Both techniques are based on the
displacement of small particles (14 um, p = 1.65 g/cm?)
inside the bulk of the fluid.

In our experimental setup three parameters can be modi-
fied. The first one is the Reynolds number Re = RV, /7,
defined wusing the propeller’s rim velocity Vi, =
27 R opf- This number can be varied continuously in the
range Re ~ 10°-10°. The second one is the aspect ratio of
the experimental volume, I' = H/D, set to 1 in this ex-
periment. The last one is the frequency dissymmetry, de-
fined as A = (fy — fs)/(fn + fs), where fy and fg are
the frequencies of each propeller, north and south. This
parameter is varied in the range | A | <0.1.

Results.—For the Re range explored, the flow is in fully
developed turbulence regime. The mean flow V = (v) =
(V,, Vg, V) represented in Figs. 2(a) and 2(b) is obtained
with the LDV system, averaging velocity series longer than
300 times the period of the propeller. The measurement is
done in the plane § = 0 with Re = 3 X 10° and A = 0.
The flow is divided into two toroidal cells, each of them
following its propeller (positive azimuthal velocity in the
south, negative in the north). In each cell, the fluid is
aspired trough the axis towards the propellers, where it is
ejected to the walls. The flow returns along the cylinder’s
wall and the equatorial plane. Using PIV measurements,
the instantaneous field can be obtained, and no traces of the
mean flow are observed. This is due to the high turbulence
rate (rms value over the mean value) which varies between
60%—-150%.

This mean flow does not preserve the symmetry around
the equator (a 7 rotation around any axis in the z =0
plane, i.e., R, symmetry). In the case presented in
Figs. 2(a) and 2(b) the cell near the north propeller is
bigger than the south one. The broken symmetry is recov-
ered when the mirror state (south cell bigger than the north
cell) is considered. Each state (labeled as “north” N or
“south” § depending on which cell is the dominant one,
i.e., bigger) are equally accessible when the system starts
from rest. This dissymmetry is in contradiction with other
works [8] in which the R, symmetry is observed (i.e., the
frontier between the two rolls is always in the plane z = 0),
probably due to the presence of baffles or inner rings,
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which would enforce this condition. Other experiments at
much slower Reynolds numbers [10] (Re = 600) have
shown that the axisymmetry can be broken producing
near heteroclinic orbits, but preserving the R, symmetry.

When larger tracers (air bubbles) are used, coherent
structures as vortices [Fig. 2(c)] are visualized. These
structures mostly relay in the dominant cell, so their azi-
muthal velocity is directly related with the azimuthal ve-
locity of the dominant cell. These vortices have a
characteristic size D,gqex = 5 cm and appear simulta-
neously to the dissymmetry of the mean flow. Previous
works in similar configurations [7] showed the formation
of a static vortex in the equatorial plane (z = 0) for much
lower Re, inaccessible with the present configuration.

The state N or § of the system can be characterized using
different variables. One is the position of the frontier z,
defined as the z position where V, = 0 [in Fig. 2(b), z¢y ~
—20 mm]. Another possibility is measuring V%, the mean
azimuthal velocity at an equatorial point near the wall (r =
0.9R, z = 0) with the LDV system [in Fig. 2(b), V' ~
—0.4 m/s]. This mean velocity is stable in time and pro-
portional to the propeller’s rim velocity. For Re < 10* we
find that the normalized azimuthal velocity (U, =
Vgl/Viop) is nearly null so the mean flow is almost sym-
metric. As the Re is increased the dissymmetry becomes
more notorious, until a plateau (U, = const) is reached for
Re > 10°.

For this range of Re the system can spontaneously jump
from one state to the other (inversions). In Fig. 3(a) the
instantaneous azimuthal velocity of the equator is plotted
versus time (f,,q = 5 X 10* s ~ 14 h) forRe = 2.7 X 10°,
A = 0. The typical transition time is about 10 s, while the
time between inversions can vary from minutes to hours.
These time scales are much slower than the period of the
propeller (fyeq = 2.4 X 10°T 05, With Tprop = 1/ fprop =
0.2 s).

The probability density function (PDF) of these states
can be computed breaking up the data series in time
intervals: a low-pass filter is applied [Fig. 3(a), white
line] that allows one to differentiate between N and S
and split the signal. The shape of these PDFs does not
depend on the cutoff frequency except for extreme values
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FIG. 2 (color online). (a) Stream
vectors V,, V, in the plane 6§ = 0.
(b) Contour plot of V. (c) Vortex
visualized with air bubbles.
(d) The gray zones indicate the
regions where (a)—(c) were ob-
tained in the cell.

(d)
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FIG. 3 (color online). (a) Inversions of the azimuthal velocity
at a point near the wall in z =0 for A =0, Re = 2.5 X 10°.
Solid white line: filtered data using a low-pass filter with a cutoff
frequency f., = 0.025 Hz. (b) PDF of u, for each state (N or §)
obtained for A = 0 and various Re.

(feut — O or f — sampling rate). Figure 3(b) shows the
PDF of the normalized instantaneous azimuthal velocity
(g = vg/Vpop) for the two states: north (with negative
most probable ug,) and south (with positive most probable
velocity). Each distribution (py or pyg) is described as the
superposition of two Gaussians:

prs(ug) = Gy + Gy g
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with Ag + Ays = 1.

Both distributions py and pg share the same properties:
one of the Gaussians G, has zero mean, while the other
Gy.s is centered around a finite value (|uy| = |ug| # 0)
that increases slightly with the Re number. The amplitudes
Ay and Ay g have a stronger dependency on the Re
[Fig. 4(a)]. For low Re the PDF are nearly Gaussians (A =
1) while for large Re (plateau) the nonsymmetric Gaussian
becomes dominant Ayg > Ay # 0. The zero mean
Gaussian G is due to residues of the symmetric flow and
the other Gaussian Gy g is related to the displacement of
the vortices around the equator.

According to this description, the system visits three
different regions in phase space around ugy = [0, uy, ug].
A simple model based on a three-well potential (one for the
symmetric case uy = 0 and the two others for the asym-
metric states uy g) will describe this dynamic:
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FIG. 4 (color online). (a) Experimental amplitude of the
Gaussians A, (X, dashed line) and Ay g (+, solid line) in
Eq. (1) versus Re. The lines are only plotted to indicate the
trend and are not obtained from any fitting. (b) PDF of u, for the
S state for the experimental data series Re = 2.5 X 10° of Fig. 3
(solid line) and numerical data (dashed line) using the model
[Eq. (2)] with e = —0.05, g = 2, B = 1. (c) Numerical ampli-
tudes of the u, (solid line) and uy g (dashed line) versus €. Each
point corresponds to an ensemble average of 100 realizations.
The noise intensity increases linearly with € in such a way that
B =0 (respectively, 1) when € = —1 (respectively, —0.05).
(d) PDF of the escape times for experimental data of
Fig. 3 (+) and for the numerical data presented in (b) (dashed
line, time unit 7, = 391 s).

g = €up + guy — uy + V2BE(1), )

where £(r) is a noise distribution with noise level B (play-
ing the role of the turbulence rate) and g controls the
relative depth of the potential wells. The N state (respec-
tively, §) will appear when the system is wandering be-
tween the wells u, and uy (respectively, u, and ug). The
parameter e is varied in the range ( — g2/4 < € < 0) where
the three solutions u, = [0, =(g/2 + (g2/4 + €)*)%3] are
stable.

Different runs using a Euler-Maruyama scheme [17]
were performed in order to recover the dynamics: for small
€ the dynamics is confined to the region around u, = 0,
whereas for € — 0 the numerical evolution presents spon-
taneous inversions. In this latter case the PDF of each state
can be computed and compared to experiments [Fig. 4(b)].
The characteristic doubly bumped distribution is obtained,
but in the numerical distribution the queues are not sym-
metric due to the shape of the sixth-order potential in the
neighborhood of ug. The relative weight of each one of the
solutions in the numerical PDFs can be calculated
[Fig. 4(c)] and compared with the experimental amplitudes
of Fig. 4(a).

The distribution of the times the system stays in one
state (residence times) follows an exponential decay law
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FIG. 5. (a) Position of the frontier (z) varying the difference
between the propeller’s frequency (A). The system presents a
bistability at A = 0. (b) Temporal evolution of the instantaneous
velocity of an equatorial point near the wall, with A =
0.026 cos(0.027r1), Re = 2.6 X 10°. The system remains slaved
to the input signal. The time scale is 2 orders of magnitude
smaller than that of Fig. 3(a).

(Kramer’s escape rate [18—20]):
p(t) = 1/Tyexp(—1t/T,), (3)

where T, is related to the intensity of noise. In Fig. 4(d) we
present the experimental residence time for the data of
Fig. 3(a). The experimental data have a characteristic
time T, = 1484 s = 70207, = 0.197,, being 7, =
R?/v the diffusion time scale.

As a consequence of the dynamics, a natural question
that arises in this problem is the response of the experiment
to an external forcing. When a sinusoidal modulation is
applied to the frequency of one of the propellers, the rim
velocity evolves as V(1) = Vo[l + 24 cos(wi)],
where A is the maximum frequency dissymmetry.

A static forcing (w = 0, Ay # 0) was applied to obtain
the minimum amplitude needed to induce an inversion in
the experiment. In Fig. 5(a) zq is represented versus A. A
dissymmetry of only A ~ 0.0025 is needed to make the
system jump between both states. No inversions have been
observed with A # 0, so up to our precision and measure-
ment times no hysteresis is found, and the system only
shows a bistability in A = 0. Further investigation will
determine if Ty < oo when A # 0.

When the harmonic forcing is induced, preliminary
results show how for low f only a small amplitude in the
input signal is needed to obtain the resonance of the
system: Periodic inversions are observed with the same
frequency of the forcing. Figure 3(b) shows how the system
is slaved to a signal with Aj = 0.026 and f = 1072 Hz. In

the range 1072 > f/ forop > 1073 it is necessary to in-
crease A to observe the synchronism. For higher f, the
system cannot follow the forcing: the inertia of the flow
limits the response time of the inversion T, ~ 20 s =
2.6 X 10737, Further experimental and numerical work
is under way in this direction.

Conclusions.—We have presented experimental evi-
dence of a bifurcation in a turbulent system that breaks
symmetries and produces slow dynamics. Two mirror
states are equally accessible, with random (natural) or
periodic (induced) inversions. The slow dynamics can be
characterized using a very simple Langevin model in spite
of being in a fully developed turbulence regime. Finally,
when a very weak amplitude input modulation is applied to
the system, a forced periodic response appears in the
turbulent flow. One open question is whether these natural
inversions could be present in dynamo experiments for
very long temporal series (T, = 1000 s) when A = 0.
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