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We investigate the complexity of the dynamics of two mutually coupled systems with internal delays
and vary the coupling delay over 4 orders of magnitude. Karhunen-Loéve decomposition of spatiotem-
poral representations of fiber laser intensity data is performed to examine the eigenvalue spectrum and
significant orthogonal modes. We compute the Shannon information from the eigenvalue spectra to
quantify the dynamical complexity. A reduction in complexity occurs for short coupling delays while a
logarithmic growth is observed as the coupling delay is increased.
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The dynamics of delay-coupled systems are rich and
varied, and very important for the consideration of biologi-
cal, chemical, and physical systems, including neurons,
chemical reactions involving transport processes, laser
systems, and electronic circuits [1,2]. Delays are often
neglected for simplicity, and this may be a good approxi-
mation when they are very short compared to other system
time scales. When this is not the case, as it has become very
clear over the past decade, time delays play a very impor-
tant role in the dynamics and function of networks of
coupled elements, and they often influence their collective
dynamics. The adaptive nature of systems with delays,
such as the variability of the number of degrees of freedom
involved at a given point in their time evolution, is of
interest and significance for specific applications [3].

Studies of single time-delayed systems show that in-
creasing delays typically lead to more complex, high di-
mensional dynamics [4]. We consider two systems with
internal, fixed time delays that are mutually coupled with a
second time delay that varies from well below to much
above the internal delay. We use a spatiotemporal repre-
sentation [5] that enables us to compactly view time series
data for time scales spanning many orders of magnitude.
The use of Karhunen-Loéve (KL) decomposition tech-
niques [6] then allows the data to reveal the number of
orthogonal modes necessary for accurate reconstructions
of the dynamics. KL. decomposition has many broad ap-
plications including analyzing turbulence, performing face
recognition, and examining transverse profiles of laser
beams [7]. The KL modes form a basis that minimizes
the entropy, or information, of the system as calculated
from the eigenvalue spectrum [8]. We use the entropy as a
quantitative measure of complexity [9] of the coupled-
system dynamics and compute it as the coupling delay is
varied. We find the interesting result that dynamical com-
plexity reaches a minimum around the resonance delay
condition for which the coupling delay is approximately
equal to the internal delay.

0031-9007/07/99(5)/053905(4)

053905-1

PACS numbers: 42.65.Sf, 05.45.Tp, 42.55.Wd

As an illustration of these ideas we will examine the
dynamics of two fiber lasers coupled with time delays that
extend over 4 orders of magnitude. The experimental
system of mutually delay-coupled erbium fiber lasers
[10] is shown schematically in Fig. 1. The lasers were
coupled with delay lines corresponding to a time of signal
propagation of 7,. The rings have closely matched cavity
lengths with internal round-trip delay times for the light of
7, = 213.9 ns. The long cavity and broad gain bandwidth
results in approximately 4000 lasing longitudinal modes in
each uncoupled laser as calculated from optical spectra
measurements and resonant cavity theory [11]. The active
fiber in the two amplifiers is identically doped and matched
in length to within 1 mm. The power in both rings was
matched by adjusting the pumps, and the variable attenu-
ators were used to match the power in the coupling lines.
Both lasers were pumped at approximately 4.6 times the
threshold value, and the coupling strength x was adjusted
with the variable attenuators to be 1.7% for these experi-
ments. This means that the average light power injected
into each ring from the other laser is 1.7% of the power
internal to it. The coupling delay was varied between 7, =
0.050 ws and 74, = 120 us by adding extra fiber to the
coupling lines. Complete (identical) synchrony, which
often appears with a time shift equal to 7,;, was observed
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FIG. 1. Schematic of experimental apparatus. The arrows
show the direction of light propagation through the rings and
the coupling lines. DL, delay line (determines 7,); VA, variable
attenuator (adjusts «).
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for all our coupled measurements as confirmed by cross
correlation synchronization analysis [12].

The lasers each have thousands of lasing modes that are
nonlinear oscillators globally coupled through sharing
population inversion. It is a daunting task to model the
laser systems with hundreds or thousands of coupled-mode
equations, since many unknown parameters relating to the
mode coupling would be involved [13]. A time domain
model that involves delay-differential equations has some-
times been employed as an alternative [2,14], but even this
approach presents serious difficulties when long lengths of
fiber with random birefringence fluctuations are involved.
Because of these difficulties, typical of fiber laser systems,
we chose to employ the KL. decomposition of spatiotem-
poral representations of the time series data.

Since 7, is constant for all of our observations, we
associate discrete spatial positions, x;, around the ring
cavity with the discrete temporal measurements of inten-
sity for each round-trip on the horizontal axis, normalized
from O to 1. The intensity of the light at different positions
around the ring is represented by a color coding scheme.
The horizontal axis thus corresponds to a spatial view of
the intensity of the laser light within the ring in one round-
trip. Subsequent round-trips of data are indexed along the
vertical axis. Since the temporal patterns do not change
abruptly from round-trip to round-trip, but evolve over
several trips, we choose every tenth round-trip for display.
The round-trip number, n,, denotes the evolution of the
system dynamics.

In Figs. 2(a)—2(d) we provide four illustrative examples
of spatiotemporal representations of experimental laser
data in panels (I). These data, u(x;, n,), are a discrete array
with each point indexed by x; and n, that we will analyze
with a KL decomposition [6]. First, for each value of x; we
subtract the mean for that position j averaged over all n,.
Next, we compute the covariance matrix, K, with elements
K(x;, xy) = (u(x;, n)u(xy, n,)), where the angle brackets
refer to time averaging. Then we calculate the eigenvalues
A; and eigenvectors t;(x ;) of K. The #;(x;) are orthogonal
KL modes that describe a spatial pattern of the intensity
over a round-trip. A sampling of these are shown in panels
(II) for each set of figures. The original data can be written
in terms of an expansion

N
M(Xj, n,) = Zai(nt)l//i(xj) (1
i=1

that uses the KL modes as its basis, where N is the number
of modes. Each mode has a coefficient, «;(n,), that weights
the impact of that mode on the round-trip pattern at round-
trip n,. Panels (II1) show the «;(n,) corresponding to the
i(x j) in panels (II). The coefficients as a function of
time are calculated with a;(n,) = Y u(x;, n,)i;(x;) where
(a;(n)ay(n,)) = X;8;. A, is the eigenvalue corresponding
to KL mode i and §;; is the Kronecker delta function. The
modes with the largest eigenvalues will be the most im-

portant in the expansion of Eq. (1) so we order the eigen-
values from largest, Xl, to smallest, /\~N, and normalize
them by the sum of all the eigenvalues. Panels (IV) show
the 25 largest normalized eigenvalues, A;, on a logarithmic
scale.

The typical dynamics of a single uncoupled fiber laser is
shown in Fig. 2(a) panel (I). The spatial patterns for the
intensity in each round-trip change slowly with time, as
shown by the time evolution of the mode coefficients in
panel (III). The eigenvalue spectrum in panel (IV) shows
an initial fast decay and then a slower tail.

Figure 2(b) is for the minimum value of coupling delay
of 50 ns. The mutual coupling induces a substantial nar-
rowing of each laser’s optical spectra and a strongly peri-
odic intensity oscillation in each ring, even though the
uncoupled fiber lasers are aperiodic in their dynamics.
The periodicity of the oscillations is slightly incommensu-
rate with the round-trip time, and eventually the pattern
switches to a different one, after about 3000 round-trips.
The two strongest spatial modes are shown in panel (II), as
is the 10th mode. Panel (III) shows the coefficients for
these three modes and reveals that the first two modes are
dominant in representing the dynamical evolution of the
laser, with much smaller contributions from the tenth. The
eigenvalue spectrum in panel (IV) shows a fast exponential
decay over 4 orders of magnitude, with a much slower
decay thereafter.

Figure 2(c) is for 7, = 218 ns that has deliberately been
adjusted to match the round-trip time internal delay of each
fiber ring, which is the resonant delay condition. In this
case, we see the regular periodicity of Fig. 2(b) replaced by
a much different temporal pattern. There is no clear peri-
odicity in the KL. modes on the time scale of one round-
trip, and the pattern evolves continuously over the entire
time of observation. Interestingly, a very small number of
modes once again can represent the dynamical evolution
with good accuracy, and the eigenvalue spectrum decays in
a way quite similar to that of Fig. 2(b).

Figure 2(d) shows a result typical of very long coupling
delays, in this case illustrated for 7, = 120 us. The spa-
tiotemporal pattern is now vastly different from the three
other ones. The round-trip pattern changes over only a few
round-trips, and now the dominant period observed is 27,
over the entire measurement. Even though the KL mode
coefficients do decrease in strength, many more modes are
now necessary to represent the dynamical evolution accu-
rately, and the mode coefficients remain comparable in
magnitude. The eigenvalue spectrum still decays exponen-
tially, but at a significantly slower rate than in Figs. 2(b)
and 2(c), and over only 1 order of magnitude for the first 25
eigenvalues.

The major conclusion of our experiments is shown in
Fig. 3. While inspecting the number of significant KL
modes involved in the dynamics provides a simple reckon-
ing of the dynamical complexity, it is preferable to use a
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(a) Uncoupled laser

(b) 1, = 0.050 s
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FIG. 2 (color online).

(a) KL decomposition for an uncoupled laser. KL decompositions for mutually coupled lasers with

(b) 7, = 0.050 us, (c) 7, = 0.218 ws, and (d) 7, = 120 ws. For (a)—(d) panel (I) is the spatiotemporal representation of the inten-
sity dynamics, panel (II) shows some KL modes i;(x) associated with eigenvalues A; (modes above the bottom mode are offset for
clarity), panel (IIT) shows the corresponding expansion coefficients, «;(n,), for the KL. modes in (II), and panel (IV) shows the 25
largest normalized eigenvalues, A;, on a logarithmic scale. The bar to the right maps the colors in panels (I) to normalized intensity

values.

measure that quantitatively utilizes the eigenvalue spec-
trum for this purpose. Here we have used a connection
between an information measure and the KL decomposi-
tion to quantitatively highlight the change in complexity of
the mutually coupled-system dynamics.

The relationship between Shannon’s entropy (or infor-
mation) [15] and the KL. decomposition is made by inter-
preting the normalized eigenvalues A; of the covariance
matrix, K, as the probabilities P; to find the system in state
i [6,8] so that

H= —ZPilogzP,» = —Z/\ilogz)li. )

The entropy, H, then provides a measure of the distribution
or rate of decay of the magnitude of the ordered eigenval-
ues. This leads us to a quantitative assessment of the
complexity of the system dynamics, as shown in Fig. 3.
The spatiotemporal representations for the uncoupled
lasers show more complexity or higher information content
than for the systems coupled with short delays, and the
information content is about 2 to 2.5 bits. The information
in the spatiotemporal representations cannot be com-
pressed as easily as for the case with the periodic dynamics
in Fig. 2(b), or even in Fig. 2(c), which contain progres-
sively smaller amounts of information per pixel of the
figures. In an extreme case, if there were only one domi-
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FIG. 3 (color online). (a) Entropy H, for the uncoupled lasers.
(b) Entropy H, for the lasers coupled with different delays, 7.
Blue <: laser 1, red X: laser 2. The error bars in both plots are
the statistical standard error based on a sample set of ten. The
letters by four data points identify the set of panels in Fig. 2 that
displays one of the time series represented by that point.

nant eigenvalue, then the information could be represented
by only one spatial mode or coordinate, and H reaches its
minimum, zero. In our case, the minimum value is about
0.6 bits per pixel, reached when 7, = 0.109 us or when
74 = T,. As the 7, is increased from this point, we see that
the complexity or information content of the dynamics
increases as well, roughly as the logarithm of the delay
time. In Fig. 2(d) the information content is about 4.5 bits
per pixel. For comparison we generated several 2D images
of uniformly distributed random numbers. The images had
the same number of pixels as our spatiotemporal represen-
tations, and the average value of H is approximately 8 bits
per pixel.

Our results demonstrate that varying the coupling delay
can result in a nonmonotonic change of complexity of the
dynamics as measured by the Shannon information derived
from the KL eigenvalue spectrum. Our analysis suggests
that highly regular periodic oscillations with frequencies
close to multiples of the fundamental internal frequency,
and a decrease in the number of effective degrees of free-
dom of the system, result when fiber laser oscillators with
slightly different parameters are coupled with short delays.
When the coupling delay is increased beyond the coher-
ence time of the individual oscillators, we obtain irregular
waveforms with much longer periodicity and increasing

complexity. For small 7, the differences between the two
lasers constrain and reduce the dynamics to a smaller
common set of modes. For very long 7,, patterns are stored
in the delay lines and contribute to the increasing complex-
ity. Further measurements at delays near 7, = 7, are nec-
essary to clarify details of the complexity minimum.
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