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In this Letter, we demonstrate that nonadiabatic dynamics of molecular scattering from metal surfaces
can be efficiently simulated by semiclassical Gaussian wave packet propagation on a local complex
potential. The method relies on the wideband limit decoupling of the nuclear equations of motion on
different electronic states. If the continuum diabatic potential surfaces are assumed to be parallel, the
number of Gaussian wave packets spawned scales at most linearly with propagation time, allowing

efficient propagation of nuclear dynamics.
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Electron transfer underlies a host of important dynami-
cal processes at surfaces, including chemiluminescence,
adsorption, inelastic scattering, catalytic bond breakage,
and electron-hole pair generation [1-3]. At metal surfaces,
electron transfer is ubiquitous because of image charge
stabilization. Furthermore, the electron transfer process is
usually strongly nonadiabatic; traditional molecular dy-
namics on the ground state potential energy surface is
inapplicable.

Following the classic paper by Newns [4], a number of
theoretical treatments of electron transfer in collisions of
atoms or molecules with metal surfaces have been reported
[1,5]. All of these assume a preassigned trajectory and
focus on the electronic evolution. This is not adequate
for low-energy (thermal) processes for which the electron
transfer event often drastically alters the forces that govern
the nuclear motion. Even a self-consistent-field (‘“Ehren-
fest”) trajectory that responds to electron transfer in an
average way fails to account for the differing nuclear paths
that result from different final electron states [6]. Proper
treatment of electronic-state-specific paths of nuclear mo-
tion is critical, e.g., to describe low probability events such
as dissociative adsorption or distributions of outcomes
such as vibrational energy relaxation in molecule-surface
scattering, the process we choose as an example below.

In this Letter, we apply a semiclassical approach to
nonadiabatic electron transfer dynamics at metal surfaces
that, within its regime of validity, properly accounts for
electronic-state-specific paths of nuclear motion. This ap-
proach is based on two approximations. First, we apply the
local potential approximation, which has been studied
extensively in the context of electron-molecule collisions
[7,8] and electron-stimulated desorption [9,10]. Next, we
apply the semiclassical Gaussian wave packet method first
derived by Heller [11] and applied to electron-molecule
collisions by McCurdy and Turner [12].

To apply these methods to the molecule-surface scatter-
ing problem, some modifications must be made. In most
gas-phase applications such as vibrational excitation, the
scattered nuclear states are bound, allowing the population
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of a finite number of quantized final states to be considered
[12]. However, such an approach is not always possible in
molecule-surface scattering, because the final nuclear state
may be bound or unbound and a continuum of phonon
excitations may occur, so the number of nuclear degrees of
freedom is potentially large. On the other hand, in appli-
cations such as dissociative attachment or electron-
stimulated desorption, the final nuclear state may be un-
bound, but electronic-state-specific information about the
nuclear trajectory is not required [9,10]. Our approach,
which treats each electronic continuum diabat indepen-
dently, efficiently provides electronic-state-specific nu-
clear information for the scattering problem. We illus-
trate our approach on a model problem designed to repre-
sent inelastic scattering of O, from a metal surface. The
probabilities of different final vibrational states of the
scattered molecule, representing different nuclear path-
ways, are compared to the results of numerically exact
integration of the time-dependent Schrodinger equation.

The Hamiltonian for a generalized admolecule-metal
system is given by
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Here |a) is the localized adsorbate electronic state, {|k)} are
the metal electronic states, and x is the vector of nuclear
coordinates. €,(x) and €,(x) are the electronic diabatic
potential energy surfaces (‘““diabats’’) as a function of the
nuclear coordinates x, where x can represent both adsor-
bate and substrate atom positions. Thus, €,(x) is the
anionic diabat (i.e., the potential energy surface when the
electron is in the adsorbate state |a)), and €,(x) is the set of
neutral diabats (i.e., the potential energy surface when the
electron has been transferred to the conduction band state
|k)). Vi (x) is the coupling between diabats. In the case of
an adsorbate-metal system, we can make a useful assump-
tion, namely, that the neutral diabats €,(x) are parallel such

© 2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.99.053201

PRL 99, 053201 (2007)

PHYSICAL REVIEW LETTERS

week ending
3 AUGUST 2007

that €,(x) = €,,(x) + E;; i.e., the adsorbate-surface inter-
action is independent of the specific k state of the conduc-
tion electron. Given this assumption, the time-dependent
Schrodinger equation yields the coupled differential equa-
tions for |i,(x, 1)) and | (x, £)). The local complex po-
tential method allows the nuclear equations of motion on
the anionic and neutral diabats |a) and {|k)} to be de-
coupled [8,13] if the bandwidth of the continuum of metal
states is large compared to the diabatic coupling strength
V,«(x). In this case, the equation for the adatom diabat is

_ 3272
i) = (3 1 00 i ),
(2)
where I'(x) = 7|V(e,(x))|*p[e,(x)] is a position-

dependent decay term. The solution ¢,(x, ) can be ob-
tained by propagating the nuclear dynamics of the initial
wave packet using Eq. (2). The solution on each neutral
diabat i, (x, 1) can be obtained by solving an inhomoge-
neous Schrodinger equation using V. (x)¢,(x, t) as the
driving term. Unfortunately, as the number of nuclear
degrees of freedom increases, propagation of the full quan-
tum dynamics becomes computationally intractable.

To address this problem, quantum nuclear dynamics can
be replaced by semiclassical Gaussian wave packet propa-
gation [11] as described in Ref. [12]. In this scheme, an
initial Gaussian wave packet described by the function

Plx, 1) = exp{[x — xo()[A() + iB(1)][x — x,(1)]
+ iq()[x — xo(1)] + 8(¢) + i0(1)} 3)

is propagated using Schrédinger’s equation. If the potential
energy term in the Hamiltonian is expanded to second
order in a Taylor series about the point X((z), a set of
coupled, nonlinear differential equations is obtained for
the parameters A(r), x,(?), q(z), 8(r), and 6(z). To solve for
,(x, 1), we follow the derivations in Ref. [11] except that
we allow the potential energy to be complex, given by
€,(x) — il['(x). This derivation yields the following equa-
tions of motion for the Gaussian parameters:
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where €, €;, €5, I'g, I';, and T, are the Taylor expansion
coefficients of the complex potential energy e(x) — il'(x).
Using this semiclassical scheme, we can propagate
,(x, 1), obtaining a trajectory of the parameters
{A, (1), B,(2), X0,(2), q,(2), 8,(2), 6,(1)} and avoiding the
difficulties of exact quantum propagation in high
dimensions.

Unlike traditional gas-phase approaches, which derive
the populations of motion for particular bound nuclear
states [8,12], we will instead obtain the nuclear wave
function on each electronic diabat |k). From Eq. (2), it
can be found that the formal solution of ¢ (x, ) is

|l (x, t)>=—% j df' e E=O/Myt (1 — 1)
0
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where U, (¢) is the propagator on the neutral diabats
Uy () = exp{ilT + €,,(x)]t/n}. (1)

The integral in Eq. (10) can be evaluated numerically by
turning it into a sum to obtain

. '
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X Via ()i, (x, ). (12)

Equation (10) states that, at each instant ¥, a new wave
packet is spawned on the |k) diabat by the coupling V ,;(x)
and is then propagated forward to time ¢ by the propagator
Ul (t — #'). The wave function (X, 1) is the coherent sum
over ¢’ of all of these wave packets. To retain our Gaussian
parametrization of the wave packets, we could expand
V.(x) up to second order in a Taylor series and fit the
spawned wave packet V. (x)|i,(x, £)) to a new Gaussian
with modified parameters. Instead, in our semiclassical
scheme, we assume that the coupling function V. (x)
varies slowly with respect to the width of the Gaussian
wave packet. In this case, V,(x) in Eq. (12) can be
replaced by its value at the center of the |a) diabat wave
packet, so that

Via®)a(x, 1)) = Via[Xoa (1) ]lha(x, 1)). (13)

The parameters of the spawned wave packet will then be
the same as those of #,(x, '), up to an overall constant.
For every diabat |k), Eq. (10) could be solved indepen-
dently. However, here we make a crucial simplifying ob-
servation: The dependence of |¢(x, 7)) on k comes only
from the phase term exp[—iE,(t — t')/h] and the overall
scaling factor V;[x,(#)] in Eq. (12). Hence, if we calcu-
late and record the trajectories of the spawned wave pack-
ets, we need only perform the phase-weighted sum in
Eq. (12) to obtain the wave function on an arbitrary neutral
diabat k. In other words, a new Gaussian is spawned on the
neutral diabats at every instant . We then propagate each
of these Gaussians forward in time with U},(f — ') using
the semiclassical scheme in Egs. (4)—(9), yielding a set of

053201-2



PRL 99, 053201 (2007)

PHYSICAL REVIEW LETTERS

week ending
3 AUGUST 2007

trajectories in parameter space {A,(s;¢), B, (1),
Xom(t; 1), Q85 1), 8,,(8; 1), 0,,(t; 1)}, which completely
describes the time evolution on all of the neutral diabats
when summed with the appropriate phase factors. If the
simulation is performed over 7 time steps, then 7 wave
packets are spawned and propagated. Storing these trajec-
tories [which requires storing O(7?) trajectory points] al-
lows us to calculate i, (x, #) for any arbitrary k.

To test our method, we applied it to a model problem
designed to resemble the vibrationally inelastic scattering
of O, from a metal surface. The O, ion was oriented so
that its bond was parallel to the surface. The two nuclear
coordinates of the system were the O, bond length x and
the surface to center-of-mass distance z. At some point in
the trajectory, an electron can transfer from the O, mo-
lecular anion to the metal surface, creating a neutral O,
molecule. The anionic electronic states experience an im-
age charge attraction to the metal surface as well as
screened Coulombic repulsion, while the neutral states
experience only the screened Coulombic repulsion. The
parameters for the continuum and the coupling V,, were
chosen to be physically reasonable, although not quantita-
tively representative of any particular metal. For instance,
the coupling V,; decays exponentially with z, as would be
expected if it were proportional to the overlap of the metal
and admolecule orbitals. Similarly, the metal continuum
was treated as a uniform band extending from a band
minimum of E_;, = —5 eV up to the vacuum level at
E,.. = 0, such that the density of states resembles that of
copper. The system Hamiltonian was

oot moo?
H=— 29l 292 + €,(x, 2)laXal

+ g[fm(x, 2) + EpJlk)k]
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Here U,(x) and U,,(x) are the Morse potentials for O, and
0O,, respectively, which were fit to gas-phase experimental
data [14]. M and p are the total mass and the reduced mass,
respectively, of the O, molecule.

The dynamics of the system described above were eval-
uated using exact dynamics and the semiclassical method.
For the exact result, a Gaussian molecular wave packet
with an incident velocity of 8.75 X 10° m/s and a width of
0.5 A was initialized at z = 8 A in the ground vibrational

state. The full quantum dynamics were then simulated
using split-operator propagation [15-17] with N = 100
electronic states used to represent the metal conduction
band. The semiclassical method used the same initial wave
packet as the exact propagation except that the vibrational
state was a Gaussian rather than the exact Morse potential
ground state. Because the Hamiltonian in Eq. (14) couples
the nuclear and electronic degrees of freedom, the exact
nuclear evolution will not be identical on the |a) and |k)
diabats. The dynamics were simulated until the electron
had been almost completely transferred to the metal at
t = 60 fs.

Figure 1 shows the populations on the different elec-
tronic diabats as a function of time using exact and semi-
classical dynamics. The semiclassical method is able to
accurately simulate the transfer of the electron out of the
adsorbate state |a) and onto the metal state |k). However,
the semiclassical method is also able to capture the depen-
dence of nuclear observables on the electronic state of the
system. Figure 2 shows a plot of the final vibrational
energy as a function of the electronic state. The discrep-
ancy between the exact and semiclassical results for low
lying states in the metal (E; < —2.5) is due to the low
population of these states (< 1072). As shown in the
figure, the total vibrational energy of the adsorbate in-
creases as the band energy of the metal state |k) to which
the electron is transferred decreases. However, in addition
to this expected result, which can be predicted from energy
conservation arguments, the semiclassical method also
predicts detailed information about the distribution of vi-
brational energy (e.g., the oscillations in the vibrational
kinetic energy shown in Fig. 2). In contrast, a mean-field
method such as Ehrenfest dynamics would give only a
single average vibrational energy and, thus, would be in-
trinsically unable to predict the electronic state dependence
of the nuclear trajectory, much less the subtle effects

o
o

o
o))

Population
o
e

o
N

t (fs)

FIG. 1 (color online). The population of the |a) and several |k)
diabats versus time as predicted by the exact (solid lines) and
semiclassical (dashed lines) methods. The |k) state populations
shown here correspond to band energies of E, = —2.4, —2.2,
—1.7, and —1.5 eV and are enhanced by a factor of 10 for
visibility.
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FIG. 2 (color online). The kinetic and total vibrational energy
of the scattered molecule at time ¢ = 60 fs versus the band
energy of the metal electronic state E; using exact (solid line)
and semiclassical (dashed line) dynamics. Discrepancies be-
tween the exact and semiclassical results for E; < —2.5 eV
are due to the low population of these states; only states with
—2.5 eV < E; < —1.0 eV were appreciably populated at ¢, =
60 fs.

observed here. Finally, it should be noted that the exact
dynamics calculations required far more computation time
than the semiclassical calculations. On a 34 GHz
Pentium IV processor, the exact calculation in Fig. 2 re-
quired 4 hours of computation, while the semiclassical
version required only 21 seconds.

We have shown that electron transfer dynamics at metal
surfaces can be efficiently simulated using a semiclassical
local complex potential method, appropriately adapted to
treat the case of molecule-surface scattering. The critical
observation of this adaptation is that newly spawned
Gaussians need to be evolved independently on only a
single one of the continuum states. Remarkably, different
populations and different pathways of nuclear motion on
each state arise from the phase interference between the
Gaussians. Once a sufficient set of Gaussians has been
propagated on a chosen continuum state, motion on any
other state can be computed simply by summing with
different phase factors. This allows one to select which
states to consider and to revise the coarse graining of the
continuum after the fact, as needed. Because the semiclas-
sical method avoids the exponential scaling of fully quan-
tum evolution, it is feasible for the simulation of large
molecules and multiple adsorbates with the explicit incor-
poration of large numbers of substrate atoms.

Several areas for future work remain. First, our method
relies on accurate diabat energies and coupling matrix
elements. In the past, such quantities have been estimated
from the excitation of Kohn-Sham orbitals within density-
functional theory (DFT) [9]. However, greater accuracy
could be obtained from the promising constrained DFT
approaches currently being developed [18]. Second, a ma-
jor limitation of the approach is its applicability only to

short time scales, a result of the nonunitarity of the semi-
classical Gaussian wave packet propagation procedure.
Fortunately, this shortcoming can be overcome by multi-
plying the Gaussian wave packet by Hermite polynomial
factors [12] to extend its validity.

Finally, in realistic metal systems, several complications
to electron transfer may arise. At finite temperature, the
conduction band of the metal may be partially filled,
limiting electron transfer. In certain systems, a narrow d
band of the metal may couple to the admolecule, yielding
coherent oscillation of the transfering electron between
metal and admolecule. Even in the absence of a coherent
transfer process, multiple incoherent electron transfer
events could occur, as electrons hop on and off of the
admolecule, generating excited electron-hole pairs. Such
a phenomenon is thought to occur in the scattering of NO
from Au(111) [19]. For a realistic calculation of scattering,
these complications will need to be taken into account.
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