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The real Ginibre ensemble consists of random N � N matrices formed from independent and
identically distributed standard Gaussian entries. By using the method of skew orthogonal polynomials,
the general n-point correlations for the real eigenvalues, and for the complex eigenvalues, are given as
n� n Pfaffians with explicit entries. A computationally tractable formula for the cumulative probability
density of the largest real eigenvalue is presented. This is relevant to May’s stability analysis of biological
webs.
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Dyson’s threefold way [1] is a viewpoint on the founda-
tions of random matrix theory, showing how consideration
of time reversal symmetry leads to three classes of ensem-
bles of relevance to quantum mechanics. The three ensem-
bles are catalogued by the classes of unitary matrices
which leave the ensemble invariant—orthogonal (time
reversal symmetry is an involution), unitary (no time re-
versal symmetry), and symplectic (time reversal sym-
metry is an anti-involution). For an ensemble theory of
Hermitian matrices, an equivalent characterization is that
the matrix elements be real, complex, and real quaternion,
respectively.

Both as a concept and as a calculational tool, the three-
fold way has been highly successful. As a concept, allow-
ing for global symmetries in addition to that of time
reversal gives a classification of the former in terms of
the ten infinite families of matrix Lie algebras [2]. This
classification now provides theoretical underpinning to
fundamental phenomena in mesoscopic physics [3],
disordered systems [4], and low energy QCD [5], in addi-
tion to the study of the statistical properties of quan-
tum spectra for which it was originally intended. A good
deal of the success relates to the matrix ensembles of
the threefold way and its generalization being exactly
solvable—analytic forms are available for all key sta-
tistical quantities, allowing for quantitative theoretical
predictions.

Soon after the formulation of the threefold way, Ginibre
[6] presented as a mathematical extension an analogous
theory of non-Hermitian random matrices. The entries are
taken to be either real, complex, or real quaternion. Like
their Hermitian counterparts, it transpires that such random
matrices have physical relevance.

Consider the complex case first. Then the joint eigen-
value probability density function (PDF) is proportional to

 

YN
l�1

e�jzlj
2
YN
j<k

jzk � zjj2; zj :� rjei�j : (1)

This can be recognized as the Boltzmann factor for the
two-dimensional one-component plasma in a disk at cou-
pling � � 2, or the absolute value squared of the wave
function for free fermions in a plane, subject to a perpen-
dicular magnetic field and confined to the lowest Landau
level [7]. In the study of chaotic dissipative quantum
systems, the statistical properties of eigenvalues for certain
model maps are well described by the corresponding sta-
tistical properties implied by this PDF [8].

In the case of real quaternion elements, the eigenvalues
come in complex conjugate pairs. The eigenvalue PDF of
the eigenvalues in the upper half plane is proportional to

 

YN
l�1

e�2jzlj2 jzl � �zlj2
YN
j<k

jzk � zjj2jzk � �zjj2 (2)

Up to an extra one body factor
QN
l�1 jzj � �zjj, the eigen-

value PDF of the eigenvalues in the upper half plane is
proportional to the Boltzmann factor for the two-
dimensional one-component plasma confined to a semidisk
at coupling � � 2, bounded by a dielectric material of
dielectric constant � � 0 along the straight edge [9,10].

Both joint PDFs for the complex and real quaternion
cases are contained in Ginibre’s paper [6]. However, in the
case of real elements, it was not until a further 25 or so
years later that the joint distribution was computed, first by
Lehmann and Sommers [11], then by Edelman [12]. Part of
the difficulty is that the joint PDF is not absolutely con-
tinuous. Rather, there is a nonzero probability that for N
even (odd) there will be an even (odd) number of real
eigenvalues for all even (odd) positive integers up to N.
The final result is that for k real eigenvalues (k of the same
parity as N), the joint PDF is
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(3)
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where ��fzpgp�1;...;m� :�
Qm
j<l�zl�zj�. Here �l2��1;1�

while �xj; yj� 2 R2
�, R2

�
:� f�x; y� 2 R2: y > 0g. Integrat-

ing (3) over f�lg [ fxj � iyjg gives the probability that
there are precisely k eigenvalues. The simplest case in
this regard is when k � N (i.e., all eigenvalues real), and
it is found that the sought probability is equal to 2�N�N�1�=4

[12]. For k � 2 an evaluation in terms of a single definite
integral has been given recently in [13], while [14] reduces
the calculation for general k down to an expression of the
same computational complexity as our Eq. (11) below.

Perhaps the first applied study to draw attention to the
eigenvalues of random real matrices was that of May [15],
in the context of the stability of large biological webs. The
very general setting [16] is to consider an N-dimensional
vector ~x�t�with components specified as the solution of the
coupled first order system dxi�t�=dt � Fi� ~x�t��, �i �
1; . . . ; N� for some nonlinear functions Fi. Assuming an
isolated equilibrium solution ~x0, linearization about this
point leads to the linear matrix differential equation

 

d~y�t�
dt
� A~y�t�; (4)

where A is an N � N matrix. The system is stable if all
eigenvalues of A have a negative real part. To model the
effect of random coupling between components on a stable
equilibrium, the matrix A is written A � �1N � B, where
B is a dilute matrix (fraction 1� c of its elements zero)
with mean zero and variance s2. The May criterion asserts
that stability requires s

�������
Nc
p

< 1. Indeed in the case c � 1
this is consistent with limit theorems for the spectral radius
of random real matrices proved subsequently [17,18].
Neural networks are further examples of complex webs
to which such a random matrix based stability analysis is
relevant [19–21]. The results obtained below allow the
evaluation of the probability of stability in the borderline
case of the May stability criterion,

 s
�������
Nc
p

� 1: (5)

As with the matrix ensembles of Dyson’s threefold way,
all correlations and a number of key distributions for the
complex and real quaternion Ginibre ensembles have been
calculated exactly [9,22]. The Fourier transform of the
two-point correlation (structure function) is a quantity of
key importance to the plasma and fermion interpretation of
(1), while the decay of the two-point function along the
boundaries indicates general physical principles [nonzero
dipole moment of the screening cloud in the case of (1),
vanishing dipole moment for (2)]. Further, the distribution
function for the spacing between eigenvalues in the bulk
can be compared against data obtained from dissipative
maps [8], while the density fluctuations in a large disk
within the bulk indicate further general physical principles
[23].

In contrast to the situation for (1) and (2), the correla-
tions and distributions have not in general been computed

for the real Ginibre ensemble. Exceptions are the density of
real eigenvalues [24]

 �r
�1��x� �

1�������
2�
p

�
��N � 1; x2�

��N � 1�

�
2N=2�3=2

��N � 1�
jxjN�1e�x

2=2�
�
N � 1

2
;
x2

2

��
(6)

with ��p; x� :�
R
1
x t

p�1e�tdt, ��p; x� :�
R
x
0 t
p�1e�tdt,

and the density of complex eigenvalues [12]

 �c
�1���x; y�� �

����
2

�

s
��N � 1; x2 � y2�

��N � 1�
ye2y2

erfc �
���
2
p
y�: (7)

Further, with Zk;�N�k�=2�u; u� denoting the canonical aver-

age of
Qk
l�1 u��l�

Q�N�k�=2
j�1 u�xj � iyj� with respect to (3),

it has been shown in [25] (taking N even for definiteness)
that
 

ZN�u; u� :�
XN
k�0

Zk;�N�k�=2�u; u�

�
2�N�N�1�=4QN
l�1 ��l=2�

Pf ��j;k�u� � �j;k�u��j;k�1;...;N;

(8)

where, with pl�x� an arbitrary monic degree l polynomial
and z :� x� iy,
 

�j;k�u��
Z 1
�1
dxu�x�

Z 1
�1
dyu�y�e��x

2�y2�=2

�pj�1�x�pk�1�y�

�sgn�y�x� (9)

 �j;k�u� � 2i
Z
R2
�

dxdyu�z�ey
2�x2

erfc �
���
2
p
y�

� �pj�1�z�pk�1��z� � pk�1�z�pj�1��z��: (10)

It is the purpose of this Letter to report that all the results
(6)–(8) can be generalized, thereby fully exhibiting the real
Ginibre ensemble as exactly solvable. For convenience it
will be assumed throughout thatN is even. We first observe
that with the second argument u on the left-hand side of (8)
replaced by an arbitrary function v � v�x; y� the equality
remains valid with u in �j;k�u� replaced by v. With pN;2n
denoting the probability that 2n out of the N eigenvalues
are real, it then follows by choosing v � 1, u � 	 that
 XN=2

n�0

	npN;2n �
1

2N�N�1�=4 QN
l�1 ��l=2�

� Pf�	�j;k�1� � �j;k�1��j;k�1;...;N (11)

[cf. Eq. (11) of Ref. [14]].
As is well known in random matrix theory [9,22], the

correlations of a Pfaffian generating functional (8) are
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themselves Pfaffians. However, in general this form involves the inverse of the matrix in (8) with u � 1. To make this
explicit, one seeks to choose the polynomials fpl�x�g to have the skew orthogonality property

 �2j;2k�1� � �2j;2k�1� � �2j�1;2k�1�1� � �2j�1;2k�1�1� � 0; �2j�1;2k�1� � �2j�1;2k�1� � rj�1
j;k: (12)

Our key result is that the very simple choice

 p2j�x� � x2j; p2j�1�x� � x2j�1 � 2jx2j�1; rj�1 � 2
�������
2�
p

��2j� 1� (13)

validates (12). With this established, and q2j�z� :� �p2j�1�z�, q2j�1�z� :� p2j�z�, one finds for the correlations between
complex eigenvalues

 �c�n���x1; y1�; . . . ; �xn; yn�� �
Yn
j�1

�2iey
2
j�x

2
j erfc �

���
2
p
yj��Pf

Sc��zj; �zk� Sc��zj; zk�
Sc�zj; �zk� Sc�zj; zk�

" #
j;k�1;...;n

; (14)

where Sc�w; z� :�
PN
j�1 pj�1�w�qj�1�z�=r��j�1�=2� and zj :� xj � iyj. In the case n � 1, the Pfaffian equals Sc��z1; z1� and

(7) is reclaimed. In the case n � 2 the Pfaffian equals Sc��z1; z1�Sc� �z2; z2� � Sc��z1; z2�Sc�z1; �z2� � Sc� �z1; �z2�Sc�z1; z2�.
Similarly, the correlations between real eigenvalues are computed as

 �r
�n��x1; . . . ; xn� � Pf

sgn �xj � xk� � Ir�xj; xk� Sr�xj; xk�
�Sr�xk; xj� Dr�xj; xk�

" #
j;k�1;...;n

(15)

with Sr�x; y� � 1
2
@
@y I

r�x; y�, Dr�x; y� � 1
2
@
@x S

r�x; y�, and

 Ir�x;y��

����
2

�

s
e�x

2=2
XN=2�1

k�0

x2k

�2k�!

Z y

0
e�u

2=2u2kdu��x$y�:

(16)

In the case n � 1 this gives ��1��x� � Sr�x; x� and (6) is
reclaimed. In the limit N ! 1 with x, y fixed (16) sim-
plifies to

 Ir�x; y� �

����
2

�

s Z y�x

0
e�u

2=2du (17)

implying the correlations decay at a Gaussian rate.
Integrating (6) over x 2 ��1;1� gives the mean number
EN of real eigenvalues, which is computed [24] to have the
large N asymptotic form

�������������
2N=�

p
�1� 3=8N � . . .�. The

variance VN of this same number is computed in terms of
the two-point correlation according to VN �R
1
�1 dx

R
1
�1 dy�

rT
�2��x; y� � EN, �rT�2��x; y� :� �r�2��x; y� �

�r�1��x��
r
�1��y�. We read off from (15) that

 

�rT
�2��x1;x2���Sr�x1;x2�Sr�x2;x1�

��sgn�x1�x2��I
r�x1;x2��D

r�x1;x2�: (18)

The quantity �rT
�2��x; y�=��1��x� is integrable in y showing

that for large N,
 

VN
EN�1� lim
N!1
�1=��1��0��

�
Z 1
�1
�rT
�2��0;y�dy���2�

���
2
p
�EN; (19)

with the final equality making use of (15) and (17).
We draw attention to quantitatively similar results which

hold for the zeros of the random polynomial p�z� �

PN
j�0�

N
j �

1=2�jz
j, where the �j are independent and identi-

cally distributed real Gaussian random variables. This has
the interpretation in quantum mechanics as a random su-
perposition of states with spinN=2. Moreover, the function
p�ei� cot�=2� vanishes at the values of (�j, �j) on the
sphere corresponding to the stereographic projection of
the zeros zj of p�z�, giving the Majorana parametrization
[26]. The analogy with the present problem is that the mean
number of real zeros is proportional to

����
N
p

, as is the
variance, and the correlations decay as Gaussians [27]. A
distinction is the lack of a boundary for the eigenvalue
support, which is distributed as a Cauchy distribution.

We remark, too, that although not reported on here, the
correlations between real and complex eigenvalues can be
written as a Pfaffian. Furthermore, we anticipate that the
partially symmetric real Ginibre ensemble, introduced in
[11], will also yield to the present strategy.

To leading order the support of the eigenvalue densities
(6) and (7) is the disk jzj �

����
N
p

, as is consistent with the
formula (5) for the boundary of the May stability criterion
(here c � 1 and s � 1; however, the variable s can be
reinstated by scaling z � z=s throughout). Setting x �����
N
p
� X and taking N ! 1 in (6) gives for the limiting

edge profile

 �r�1��X��
1�������
2�
p

�
1

2
�1�erf

���
2
p
X��

e�X
2

2
���
2
p �1�erfX�

�
: (20)

For any fixed angle away from the real axis, as N ! 1 the
density of complex eigenvalues near the boundary of sup-
port is radially symmetric, and the same as that in the
complex Ginibre ensemble. Writing the radius r as r �����
N
p
� R, for N ! 1 this has the explicit form [28,29]
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 �c�1��R� �
1�������
2�
p �1� erf

���
2
p
R�; (21)

and is thus equal to twice the first term in (20).
Suppose now that the variance of the Gaussian entries is

reinstated as the variable s2. Let Rr be the event there are
no real eigenvalues, or all real eigenvalues are less than r.
By scaling of the eigenvalues, Pr�Rs

���
N
p
�sr� is independent

of s, and forN ! 1 it is an order 1 function of r. The latter
can be written as an infinite sum over the limiting n-point
edge correlations, or equivalently as a Fredholm determi-
nant of the integral operator with kernel given by the edge
limit of the general entry in (15). For r large one has
limN!1 Pr�Rs

���
N
p
�sr� 
 1�

R
1
r �

r
�1��X�dX, showing that

the corresponding PDF decays as a Gaussian. For general
N a practical formula for computing this probability is in
terms of the generating functional (8), Pr�Rs

���
N
p
�sr� �

ZN���2��1;s
���
N
p
�sr�; 1�, where �A � 1 if A is true, �A � 0

otherwise, and with the polynomials in (9) and (10) chosen
according to (13). Numerical values of Pr�Rs

���
N
p � so com-

puted are tabulated in Table I for successive even values of
N. The quantity Pr� ~Rs

���
N
p � :� �Pr�Rs

���
N
p � � pN;0�=�1�

pN;0�, also listed in Table I, gives the probability that all
real eigenvalues are less than s

����
N
p

, given that there is at
least one real eigenvalue. In the case s2 � 1=N, this cor-
responds to the probability that all nonoscillatory solutions
of the linear system (4) are stable, given that there is at least
one nonoscillatory solution.

With this study, building on the contributions of
Lehmann and Sommers [11], Edelman [12], Kanzieper
and Akemann [14], and Sinclair [25], the problem began
by Ginibre over 40 years ago of calculating the statistical

properties of the eigenvalues of non-Hermitian real
Gaussian matrices is solved. As a consequence, the distri-
bution of the largest real eigenvalue is presented in a
computable form. The largest real eigenvalue determines
the stability of nonoscillatory solutions in May’s [15]
analysis of biological webs.
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TABLE I. Tabulation of two probabilities, specified in the text,
relating to the probability that all real eigenvalues of an N � N
Gaussian real matrix, entries of mean zero, variance s2, are less
that s

����
N
p

.

N Pr�Rs
���
N
p � Pr� ~Rs

���
N
p �

2 0.81444 0.737 579
4 0.793 864 0.756 706
6 0.784 485 0.762 255
8 0.778 838 0.764 193

10 0.774 963 0.76475
12 0.772 092 0.76469
14 0.769 855 0.76434
16 0.768 048 0.76385
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