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The phase diagram of the Bose-Hubbard model in the presence of off-diagonal disorder is determined
using quantum Monte Carlo simulations. A sequence of quantum glass phases intervene at the interface
between the Mott insulating and the superfluid phases of the clean system. In addition to the standard Bose
glass phase, the coexistence of gapless and gapped regions close to the Mott insulating phase leads to a
novel Mott glass regime which is incompressible yet gapless. Numerical evidence for the properties of
these phases is given in terms of global (compressibility, superfluid stiffness) and local (compressibility,
momentum distribution) observables.
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The competition between disorder, interactions, and
commensurability in quantum many-body systems is
known to produce novel quantum glassy phases, charac-
terized by a gapless spectrum and by the absence of a
global order parameter [1]. 4He adsorbed on porous media
[2], granular superconductors [3], disordered magnets [4]
are but a few manifestations of localization effects due to
random potentials in interacting bosons. In recent years,
ultracold atomic gases in magneto-optical traps have
opened a new frontier in the study of strongly correlated
systems, as unprecedented control over experimental pa-
rameters in these systems makes them ideally suited for
studying many-body phenomena. Disorder can be gener-
ated in optical lattices by exposure to speckle lasers [5,6],
incommensurate lattice-forming lasers [7–9], and by other
means [10]. The interplay between disorder and interac-
tions in trapped Bose-Einstein condensates has recently
been explored experimentally in 87Rb, both in the contin-
uum [6,11,12] and in an optical lattice [9,13].

Theoretically, the effects of random potentials on inter-
acting bosons in periodic lattices have been studied using
analytic [1,14–16] and numerical techniques [17]. It is now
well established that even infinitesimally small potential
disorder can destroy the direct superfluid (SF) to Mott
insulator (MI) transition in one dimension by introducing
an intervening insulating, but compressible, Bose glass
(BG) phase [1,18]. Surprisingly, while the effects of po-
tential disorder have been widely investigated, other kinds
of disorder, e.g., hopping or interaction strengths, have
remained largely unexplored until recently, when it was
demonstrated that these can lead to qualitatively quite
different phenomena [19–21]. In the quantum rotor model
with off-diagonal disorder, the SF to MI transition takes
place via an intermediate Mott glass (MG) phase [20,21]—
a unique incompressible, yet gapless, glassy regime that
was first reported in disordered fermions with extended
range interactions [22]. It is thus of great interest to inves-
tigate whether such a phase also appears in the Bose-
Hubbard model (BHM), and if particle-hole symmetry is
essential for the stabilization of such a MG.

We use large-scale quantum Monte Carlo (QMC) simu-
lations to study the effects of off-diagonal disorder in the
Bose-Hubbard model on a one-dimensional (1D) lattice.
We find that, in contrast to diagonal disorder, the Mott
lobes do not shrink in the presence of off-diagonal disorder.
Instead, there is an extended BG phase separating the MI
lobes from the SF regime, and an additional MG regime
emerges.

The Bose-Hubbard model is given by the Hamiltonian

 H �
XL
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where byi (bi) creates (annihilates) a boson at site i, ti;i�1 is
the hopping matrix element between sites i and i� 1, U is
the on-site interaction strength, and � is the chemical
potential. Off-diagonal disorder is introduced in the form
of a bimodal distribution of the hopping matrix elements—
ti;i�1 � t or t=3 with equal probability [23]. The stochastic
series expansion (SSE) [24] method is used to simulate the
model (1) in chains of length L � 64–256. For each set
of parameters, 200–1000 realizations of disorder are
sampled. To characterize the emerging phases, we compute
the superfluid stiffness and the global compressibility. In
simulations employing updates that sample different wind-
ing number sectors, the stiffness is conveniently obtained
from the fluctuations in the winding numbers of the world
lines as �s � �hW2i=2��av, where �. . .�av denotes averag-
ing over multiple realizations of disorder. The global com-
pressibility, �, is the energy cost of adding a particle to the
system. It is defined by � � ��hn2i � hni2�av, where n is
the density of particles.

At sufficiently large U, local variations of the hopping
amplitudes create a nontrivial landscape of higher-mobility
domains (‘‘lakes’’) that coexist with gapped, localized
regions. In order to tune the size of these lakes, we in-
troduce spatially correlated disorder. The Fourier filtering
method [25] is used to generate a sequence of random
numbers, ��i�, with long-range algebraic correlation,
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 C�i� j� � h��i���j�i 	 ji� jj��: (2)

Without any loss of generality, we choose � � 0:3. This is
then mapped onto a bimodal distribution of hopping inte-
grals, ti;i�1, between sites i and i� 1 of a one-dimensional
lattice. While the qualitative features are the same for
correlated and random disorder, spatially correlated disor-
der favors extended domains in the disorder realizations.
This, in turn, allows for a more reliable identification of the
phase boundaries of the unique MG phase which differs
from the MI only in terms of short-range properties. Its
proper characterization thus depends crucially on the sam-
pling of finite-ranged domains. With uncorrelated disorder,
typical domain sizes are smaller, which renders the MG
phase more difficult to detect numerically.

The results of the simulations are summarized in Fig. 1,
rendering a rich phase diagram. In the absence of disorder,
the ground state of the BHM is in either the SF or the MI
phase. The SF-MI transitions (dashed lines) are marked by
the simultaneous vanishing of the compressibility, �, and
stiffness, �s, leading to the well-known sequence of MI
lobes, with integer fillings [26,27], as�=U is varied. In the
presence of diagonal disorder, the two transitions—�s � 0
and � � 0—decouple and a compressible (� > 0), insu-
lating (�s � 0) BG phase appears. With off-diagonal dis-
order, an additional glassy phase—the MG—is realized.
The MG has global properties identical to the MI (�s � 0,
� � 0 and integer filling), but differs in local properties. In
contrast to diagonal disorder, the Mott lobes do not shrink
with respect to the clean case. There are no glassy phases in

the atomic limit (t=U ! 0). At finite t=U, the direct SF-MI
transitions of the clean limit are replaced by SF-BG-MG-
MI sequences. Our results are consistent with all the tran-
sitions being continuous.

Details of the simulations are illustrated in Fig. 2. The
global stiffness and compressibility are shown as a func-
tion of the chemical potential�=U at constantU=t � 6:25,
i.e., along the dashed line in Fig. 1. The data for the clean
system are shown for comparison. At small values of�=U,
the ground state is SF with �s > 0, � > 0. With increasing
�=U, the system passes through a series of phases, as
indicated in the figure. The first SF-BG transition is marked
by the vanishing of �s, while � remains finite across the
transition. This coincides with the SF-MI boundary in the
clean system with ti;i�1 � t=3 for all links. In the BG
phase, the ground state is a mixture of SF and MI domains
of all sizes—the domains with ti;i�1 � t=3 are local MIs,
while those with ti;i�1 � t are locally SF. The MI phase of
the disordered system coincides with that in the clean limit
with ti;i�1 � t. Of particular interest are the regions
marked I, II, and III. For these ranges of �=U, the global
compressibility, �, and the stiffness, �s, vanish identically.
The ground state has integer filling (n � 1 for regions I and
II and n � 2 for region III). The global properties are thus
identical to those of the MI phase. As shown next, unlike
the MI phase, the ground state has locally compressible
regions, and these ranges of �=U can accordingly be
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FIG. 1 (color online). Phase diagram of the 1D BHM with
spatially correlated off-diagonal disorder: ti;i�1 � t=3 and t with
equal probability. For comparison, the phase boundaries of the
clean system (ti;i�1 � t) are shown with dashed lines. The
phases are characterized by the stiffness �s and global com-
pressibility �: SF (�s > 0, � > 0), BG (�s � 0, � > 0), MI
(�s � 0, � � 0). The MG and MI phases have identical global
properties and differ only in local properties.
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FIG. 2 (color online). Stiffness (�s) and compressibility (�) as
functions of the chemical potential (�) at constant t=U � 0:16
(cut along the dashed line in Fig. 1). For comparison, data of the
clean system are also shown. In the absence of disorder, stiffness
and compressibility vanish simultaneously at the SF-MI bound-
ary. In the presence of disorder, the �s � 0 and the � � 0
transitions decouple, resulting in the glassy phases BG (�s �
0, � > 0) and MG (�s � 0, � � 0). The MG regimes I, II, and
III differ from the MI in terms of local quantities. Note that there
is a finite MG phase with n � 2 (1:28<�=U < 1:34) while
there is no corresponding MI phase.
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identified as MG phases. Since these regimes lie outside
the Mott lobes of the clean system with ti;i�1 � t (in
particular, there is no n � 2 MI phase for this value of
U=t), the ground state consists of a mixture of SF (ti;i�1 �
t) and MI (ti;i�1 � t=3) domains as in the BG phase, but
differs from the BG by being globally incompressible.

Having explored the global properties, we focus on the
local compressibility and the momentum profile of the
ground state in each phase. The local compressibility at
site i is defined as the local number fluctuation, �i �
��hn2

i i � hnii
2�av, where ni is the particle density at site

i. The momentum distribution is obtained from the equal-
time Green’s function,

 n�q� �
1

N

X
l;m

e�iq�rl�rm�hbyl bmi: (3)

n�q! 2�� measures the short-range coherence in the
system. The left panel of Fig. 3 shows the distribution of
the local compressibilities in a lattice of length N � 128,
averaged over 800 disorder realizations. In the MI phase,
the distribution is peaked at small �i. Conversely, in the SF
phase it is peaked at a finite value. In the BG and MG
phases, the distribution has a double-peaked structure,
consistent with coexisting SF and MI domains in these
phases [28]. Figure 3(b), shows momentum profiles in
these phases. n�q� is sharply peaked at q � 0 in the SF
phase and exhibits only a weak broad maximum around
q � 0 in the MI phase. The behavior of the MG and BG
phases is similar and intermediate between the two lim-
its—there is a peak at q � 0 arising from the SF domains,
but the height is reduced due to the MI domains. Thus the

BG and MG phases have very similar short-range structure
(both phases consist of coexisting SF and MI domains),
although their global responses are rather different, as
documented by Fig. 2. While the MG phase is globally
incompressible, there exist a gapless channel that allows
the exchange of particles between adjacent SF and MI
domains, leading to its incompressible yet gapless charac-
ter. Such a mode is made possible due to the local variation
of the kinetic energy of the bosons in the different domains.
This explains why the MG phase is not observed for purely
diagonal disorder and is unique to off-diagonal disorder
[29]. The need to probe local properties also makes it
difficult to detect this phase in current optical lattice ex-
periments, where, additionally, domains of different phases
coexist. Current developments in local probes using selec-
tive microwave spectroscopy [30] and the recently sug-
gested method of using induced controlled interactions
between a ‘‘probe particle’’ and the many-body state ap-
pear promising [31].

To further characterize the various phases and probe the
gapless nature of the MG phase, we study the static struc-
ture factor, S�q�, for the density-density correlation

 S�q� �
�X
j;k

e�i
q
�rj�rk�hnjnki
�

av
(4)

and the associated susceptibility,

 ��q� �
�Z �

0
d	
X
j;k

e�i
q
�rj�rk�hnj�	�nk�0�i
�

av
: (5)

A finite value of S�q� as q! 0 implies the phase is
compressible; i.e., the energy gap towards adding or re-
moving a particle vanishes in the thermodynamic limit.
Conversely, a vanishing S�q� as q! 0 is a signature of an
incompressible phase with a gapped charge excitations.
Additionally, the ratio 2��q�=S�q� as q! 0 gives an upper
bound for the charge excitation gap [32]. Figure 4 shows
the structure factor and the susceptibility as a function of
momentum for representative points in each of the differ-
ent phases. Consistent with global compressibility mea-
surements, S�q� vanishes as q! 0 in the MI and MG
phases, whereas it remains finite for SF and BG ground
states. The upper bound of the charge excitation gap, � �
2��q�=S�q� as q! 0, on the other hand, sheds light on the
nature of the MG phase. Although �MG is finite, it is less
than the effective chemical potential difference 
�I�II

MG
between type I (t � 1) and type II (t � 1=3) domains.
While there is a gap towards overall addition or removal
of bosons, there exists a gapless mode involving the trans-
fer of particle across the boundaries of the two types of
domains which is driven by the effective potential energy
difference between adjacent sites at the domain bounda-
ries. This is in contrast to the MI phase where the effective
potential difference 
�I�II

MI between the two types of do-
mains is less than �MI. This confirms the existence of a
gapless mode in the MG phase.
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FIG. 3 (color online). (a) The distribution of local (site) com-
pressibilities in the different phases averaged over 800 realiza-
tions of disorder. The double-peaked distribution in the BG and
MG phases indicate the presence of coexisting SF and MI
domains. (b) Momentum profiles of the corresponding ground
states. The BG and MG phases have similar momentum profiles,
reflecting the similarity in their local structure.
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In conclusion, using large-scale quantum Monte Carlo
simulations, we have observed that off-diagonal disorder
(random hopping), yields a nontrivial sequence of quantum
glass phases that intervene at the interface between the
Mott insulating and the superfluid regimes of the clean
system. In particular, the coexistence of gapless and
gapped regions close to the Mott insulating phase leads
to a novel Mott glass phase which is incompressible and
gapless. It shares some of the global properties of the Mott
insulator, but resemble the Bose glass in local properties. It
is remarkable that the phase boundaries of the Mott insu-
lating phase are basically unaffected by off-diagonal dis-
order, and that the extent of the Mott glass can be tuned by
varying the range of the spatial correlations in the disorder
realization. It is also evident that particle-hole symmetry is
not a prerequisite for observing the Mott glass phase. The
essential ingredients for its realization are off-diagonal
(hopping) disorder and commensurate filling. Finally we
observe that while the present results are obtained for a
one-dimensional system, the Mott glass phase is expected
to be more robust in higher dimensions. As seen here, the
robustness of the Mott glass phase depends crucially on
having large domains with uniform intradomain hopping.
This is achieved more readily in higher dimensions due to
the increased coordination number. Indeed, in three dimen-
sions, the Mott glass phase is expected to persist to finite
temperatures.
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FIG. 4 (color online). (a) Static structure factor, and (b) static
susceptibility for the diagonal correlation in the different phases
as a function of momentum. The effective potential difference
between type I (t � 1) and type II (t � 1=3) domains in the MG
and MI phases are denoted by 
�I�II

MG and 
�I�II
MI , respectively.

Consistent with global compressibility measurements, S�q� van-
ishes as q! 0 in the MI and MG phases, but remains finite in
the SF and BG phases. �MG > 2��q�=S�q� as q! 0 in the MG
phase, implying the existence of a gapless mode.
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