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A method based on the analysis of the Majorana polynomial roots is introduced to compute the
spectrum of the Lipkin-Meshkov-Glick model in the thermodynamical limit. A rich structure made of four
qualitatively different regions is revealed in the parameter space, whereas the ground state study
distinguishes between only two phases.
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The Lipkin-Meshkov-Glick (LMG) model introduced in
1965 to describe the shape phase transition in nuclei [1]
has, since then, been proposed to describe many systems
ranging from interacting spin systems [2] to Bose-Einstein
condensates [3] or magnetic molecules such as Mn12 ace-
tate [4]. This ubiquity is due to its mapping onto a single
particle evolving in a double-well potential [5,6] or onto an
interacting two-level boson system. More recently, this
model has also been used to investigate the relationship
between entanglement and quantum phase transitions
[7–10].

The LMG model is known to be exactly solvable [11–
13]. However, getting the solution requires solving Bethe-
like equations, a task which, in the present context, is more
costly than exact diagonalization. A complete description
of the spectrum thus requires developing alternative routes.
Though the low-energy spectrum has been studied in detail
via different methods (variational [1], bosonization [9,14],
coherent states [15]), the richness of the full spectrum has
been investigated only lately by means of numerical diag-
onalizations [16,17]. These latter studies suggest the exis-
tence of singular points in the density of states as well as a
nontrivial level spacing distribution.

In this Letter, we shed light on these issues by exactly
computing the spectrum of the LMG model. The proposed
method relies on the determination of the Majorana poly-
nomial roots associated with the eigenstates of the
Hamiltonian. This polynomial is built within a coherent
state formalism which is well suited to such a system.
Within this framework, the spectrum is encoded in a linear
differential equation which is solved in the thermodynam-
ical limit. This allows us to exactly compute the density of
states in the whole parameter range and to locate its
singularities. Four distinct regions arise with qualitatively
different properties. In particular, we find a parameter
regime for which the density of states has no thermody-
namical limit.

The LMG model describes a set of N spin- 1
2 mutually

interacting through a XY-like Hamiltonian and coupled to
an external transverse magnetic field h. This Hamiltonian
H can thus be expressed in terms of the total spin operators
S� �

PN
i�1 �

i
�=2, where the ��’s are the Pauli matrices:

 H � �
1

N
��xS

2
x � �yS

2
y� � hSz: (1)

In the following, we consider only the maximum spin
sector s � N=2, with N even. Given the symmetry of
the spectrum of H, we focus on the parameter range
h � 0; 0 � j�yj � �x. Note also that �H;S2	 � 0 and
�H; ei��Sz�s�	 � 0 (spin-flip symmetry). Denoting by
fjs;mig the standard eigenbasis of fS2; Szg, this latter sym-
metry implies that odd and even states decouple. In the
thermodynamical limit, both subspaces are isospectral, so
we limit the following analysis to the sector m even for
which one has exactly (s� 1) eigenstates.

In the spin coherent states basis [18], with non-
normalized states j�i � e ��S�js;�si, any state j�i is rep-
resented by its Majorana polynomial [19] defined as
 

���� � h�j�i �
Xs
m��s

������������������������������������
�2s�!

�s�m�!�m� s�!

s
hs;mj�i�m�s

� C
Yd
k�1

��� �k�; (2)

where d � 2s is its degree.
The standard representation of the spin operators (S
 �

Sx 
 iSy) in the coherent states basis

 S� � 2s�� �2@�; (3)

 S� � @�; (4)

 Sz � �s� �@� (5)

allows one to map the Schrödinger equationHj�i � Ej�i
onto the following linear differential equation [5,20]:

 

�
P2���

�2s�2
@2
� �

P1���
2s

@� � P0���
�

���� � "����; (6)

where " � E=s and

 P0��� �
1

4s
��2�2s� 1���y � �x� � �x � �y	 � h; (7)

 P1��� � �
�
2s� 1

2s
��2��x � �y� � �x � �y	 � 2h

�
; (8)
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 P2��� � �
1

2
���2 � 1�2�x � ��2 � 1�2�y	: (9)

Except for trivial values of the parameters, the degree of �
for an eigenstate of H in the sector we considered is d �
2s. At this step, the spectrum could be analyzed by map-
ping Eq. (6) onto a Schrödinger equation describing a
particle in an effective one-dimensional potential [5,6].
Then a semiclassical treatment would, in principle, allow
one to obtain the density of states in the thermodynamical
limit, as shown in Ref. [4] for the low-energy spectrum in
the region �y � 0, �x > 0. Unfortunately, for arbitrary
values of the parameters, the effective potential becomes
tricky [6], and such an approach is therefore difficult to
follow. Here we propose an alternative route by first con-
verting the linear second-order differential equation for �
(6) into a first-order differential equation for its logarithmic
derivative. More precisely, the function G defined as

 G��� �
1

2s
@� log���� �

1

2s

X2s
k�1

1

�� �k
(10)

satisfies the following Riccati-like equation:

 P2���
�
G0���

2s
�G2���

�
�P1���G����P0����": (11)

The density of states is then given by analyzing the poles of
G, i.e., the roots of the Majorana polynomial �. Indeed,
the cornerstone of this study is that, for this model, the �k’s
are spread over two curves C0 and C1 in the complex plane
which depend on the energy. In addition, the nth excited
state of H has 2n poles on C1 and 2�s� n� on C0 (thus
defining both curves). This remarkable property stems
from the oscillation theorem which indexes the excited
states for a particle in the effective one-dimensional po-
tential (discussed above) by the number of wave function
nodes. To illustrate this repartition of the poles which is
likely related to the integrability of the model [21], we
display in Fig. 1 several typical states in the Majorana
sphere representation [19]. This representation generalizes
the celebrated Bloch sphere used for spin- 1

2 states and
proceeds as follows. For a given polynomial with d roots,
we first complement it with (2s� d) roots at infinity in the
complex plane. Next, the resulting set of 2s points is sent
onto the unit sphere by an inverse stereographic map. For
instance, within this mapping, the basis state js;mi is
represented by (s�m) points on one pole and (s�m)
points on the opposite pole.

The location of the poles of G explained above provides
a straightforward relation between the normalized inte-
grated density of states N 2 �0; 1	 and the number of
poles lying in C1. One indeed simply has

 N �"� �
n� 1

s� 1
�

1

s� 1

�
s

2i�

I
~C1

G���d�� 1
�
; (12)

where ~C1 is a contour that surrounds C1 and oriented such
that N � 0. In this equation, G is built from the nth
excited state, and the dependence of N with " is given

via Eq. (11). Unfortunately, one cannot solve Eq. (11)
exactly at finite s, which would give a complete explicit
solution to our problem. However, one can easily solve it
perturbatively in 1=s.

Therefore, let us assume that G, and ", can be expanded
in the following form:

 G �
X
i2IN

Gi

si
; " �

X
i2IN

"i
si
: (13)

At leading order s0, Eq. (11) becomes a second-order
polynomial equation for G0 whose solutions simply read

 G
0 ��� �
���2��y � �x� � �x � �y � 2h	 


��������������
2Q���

p
2P2���

;

(14)

where

 

Q��� � ��y � �x��h� "0��
4

� 2�h2 � �x�y � "0��x � �y�	�
2

� ��x � �y��h� "0�: (15)

The four roots ofQ are the branch points ofGwhich define
the limit of the curves C0 and C1. A close analysis of these
branch cuts, in the parameter space, then leads to the
integrated density of states in the thermodynamical limit,
which reads

FIG. 1 (color online). Upper part: Representation of the poles
of G on the Majorana sphere (blue dots) for three typical
eigenstates computed for h � 1, �x � 5, �y � �3, and s �
20 (zone III in Fig. 2). Black lines correspond to the G0 branch
cuts C0 and C1. Lower part: Numerical (black staircase curve s �
20) versus analytical (red line s � 1) integrated density of
states. Black dots indicates the singularity of the density of
states NIII

0 ��h� and NIII
0 �h� [Eqs. (18) and (21), respectively]

in the thermodynamical limit.
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 lim
s!1

N �"� �N 0�"0� �
1

2i�

Z
C1

�G�0 ��� �G
�
0 ���	d�:

(16)

This quantity can be expressed in terms of lengthy expres-
sions involving elliptic integrals. We obtained these ex-
pressions in the whole parameter space and will give them
explicitly in a forthcoming publication [22]. In the follow-
ing, we discuss only qualitatively the various regions that
must be distinguished and analyze them by means of the
density of states �0��0� � @"0

N 0�"0�.
But, first of all, let us remind the reader that if one

considers only the properties of the ground state, which
define the zero-temperature phase diagram, only two
phases must be distinguished. For h > �x (symmetric
phase), the ground state is unique and lims!1hSzi=s � 1,
whereas for h < �x (broken phase), the ground state is
twofold degenerate and lims!1hSzi=s � h=�x. The quan-
tum phase transition at h � �x is second-order and char-
acterized by mean-field critical exponents [2] and
nontrivial finite-size scaling behavior [9,23]. An important
result of our study is that, when considering the full spec-
trum, four different zones arise instead of two. These
regions, described below, are characterized by different
singular behaviors of the density of states (see Fig. 2) as
already noticed in a numerical study of the special case
�x � ��y [16].

Zone I: j�yj<�x < h.—In this sector, the density of
states �0 is a smooth function of �h � "0 � h as can be
seen in Fig. 2. The distribution of Majorana polynomial
roots for the eigenstates is similar to that displayed in
Fig. 1(b). In the complex plane, C0 and C1 lie in the
imaginary and real axes, respectively.

Zone II: j�yj< h< �x.—In this region, two distinct
branches must be distinguished: II(a)���h2 � �2

x�=2�x	 �
"0 � �h. C0 coincides with the whole imaginary axis,
while C1 is made of two disconnected segments in the

real axis as depicted in Fig. 1(a). II(b) �h � "0 � h. C0

and C1 are the same as in I.
These two branches of the density of states diverge at

"0 � �h, where the elliptic integrals involved in the ex-
pression of N 0 can be recasted in the simple following
form:
 

N II
0 ��h��1�

2

� ������������x�y
p �

�
A�h tan�1A

�
h

B0
h

�A�h tan�1A
�
h

B�h

�
;

(17)

with

 A
h � h

�����������
�x�y
p

; (18)

 B0
h �

��������
h�x

p
�

��������
h�y

q
�

������������������������������������
��x � h��h� �y�

q
; (19)

 B
h � 
�
��������
h�x

p
�

��������
h�y

q
� �

������������������������������������
��x � h��h� �y�

q
: (20)

Zone III: h <��y < �x.—In this zone, there are three
different branches: III(a) ���h2 � �2

x�=2�x	 � "0 � �h.
C0 and C1 are the same as in II(a). III(b) �h � "0 � h. C0

and C1 are the same as in I. III(c) h � "0 �
���h2 � �2

y�=2�y	. C0 is made of two disconnected seg-
ments in the imaginary axis, while C1 coincides with the
whole real axis as depicted on the Majorana sphere in
Fig. 1(c).

In this zone, the density of states has two singularities at
"0 � 
h. Their position in the spectrum is given by
N III

0 ��h� �N II
0 ��h� [see Eq. (18)] and

 N III
0 �h� �

2

� ������������x�y
p

�
A�h tan�1 A

�
h

B0
�h

� A�h tan�1 A
�
h

B��h

�
:

(21)

For �x � ��y, the density of states is symmetric with
respect to "0 � 0, and the above expression gives the exact
location, in the thermodynamical limit, of the so-called
exceptional point observed in Ref. [16].

Zone IV: h < �y < �x.—This part of the phase diagram
is the most complex one. The density of states is, as in
zone III, made of three different branches: IV(d) ���h2�
�2
x�=2�x	 � "0 � ���h

2 � �2
y�=2�y	; IV(e) ���h2�

�2
y�=2�y	 � "0 � �h; IV(b) �h � "0 � h.
However, the structure of the C1 curve, in each case, is

complex, but C0 remains simple so that the integral in
Eq. (16) can still be computed and reveals two special
points. The first one occurs at "0 � ���h

2 � �2
y�=2�y	,

for which
 

N IV
0

�
�
h2��2

y

2�y

�
�1�

1

� ������������x�y
p

��A�tan�1Ch�A�tan�1C�h	; (22)

with

FIG. 2 (color online). Phase diagram in the �x; �y plane at
fixed h > 0 and typical density of states for (�x, �y, h) equal to
I: (1=2, 1=3, 1), II: (2, 1=2, 1), III: (5, �3, 1), and IV: (5, 3, 1).
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 Ch �
h

������
�x
p

� �3=2
y�����������������������������������������

��x � �y���2
y � h2�

q : (23)

There, the density of states diverges as in zones II and III.
The second one arises at "0 � �h, where

 N IV
0 ��h� � 1�

h������������x�y
p ; (24)

but, at this energy, the density of states is discontinuous in
the thermodynamical limit as can be seen in Fig. 2.

We have confirmed this anomalous behavior numeri-
cally and observed an even more surprising result.
Indeed, the energy difference between two consecutive
levels ��i� � E�i�1� � E�i� (i � 1; . . . ; s) is normally given
by �0�"0� � 1=�0�"0� in the thermodynamic limit.
However, in region IV(e), numerical results (at finite s)
show that it is not the case. Instead, ��i� spreads over two
branches (�) and (�), depending on the parity of the i. In
addition, these branches oscillate without converging when
s increases as can be seen in Fig. 3. In this case, the gap we
computed, in the thermodynamical limit, is the average
gap, namely, �0�"0� �

1
2 ��

����"0� � �����"0�	.
To understand physically this unusual phenomenon, we

have analyzed the classical trajectories in this region and
have observed that there are two possible classical trajec-
tories [22]. Using the results described in Ref. [20], we
computed analytically the expectation values of several
observables (such as the magnetization) as a function of
energy. We found that these values also depend on the
parity of the level considered, but, contrary to the gap,
the two branches converge in the thermodynamical limit.

Finally, note that, for h � 0, the LMG model in this
region coincides with the quantum asymmetric rotor model
[24].

In conclusion, we emphasize that the present approach
can be extended to other similar models with higher-order
interaction terms where the mapping onto a particle in a
one-dimensional potential fails. Further, one can go be-
yond the thermodynamical limit and extract the finite-s
corrections which could be crucial for some observables
[22].
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FIG. 3 (color online). Gap between two consecutive levels as a
function of the energy in region IV for �x � 15, �y � 10, and
h � 1. In the central region, the middle red line is the average
gap �0 in the thermodynamical limit. The branches below and
above this line are, respectively, ���� and ���� (see text).
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