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The solar influence on global climate is nonstationary. Processes such as the Schwabe and Gleissberg
cycles of the Sun, or the many intrinsic atmospheric oscillation modes, yield a complex pattern of
interaction with multiple time scales. In addition, emissions of greenhouse gases, aerosols, or volcanic
dust perturb the dynamics of this coupled system to different and still uncertain extents. Here we show,
using two independent driving force reconstruction techniques, that the combined effect of greenhouse
gases and aerosol emissions has been the main external driver of global climate during the past decades.
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Global climate has changed rapidly over recent decades,
as reflected by patterns of tropical circulation, cyclone
intensity, and other climatological parameters [1]. In par-
ticular, global temperatures have increased by �0:6�
0:2� �C since 1860. A question that has become increas-
ingly crucial is to determine the responsibility of several
potentially explaining factors, most notably the emission
of heat-trapping greenhouse gases (GHGs), the direct and
indirect cooling effect of aerosols, the Sun’s increased
radiative output, the lack of volcanic activity, etc. [2,3].
On one hand, the thesis of warming by increased GHGs is
supported by extensive simulations with atmosphere-ocean
general circulation models (GCMs) [4–6]. On the other
hand, a number of paleoclimatic reconstructions of global
temperatures show a conspicuous correlation to the secular
behavior of solar irradiance during the Holocene [7–9].
Furthermore, recent empirical studies claim that the phys-
ics of global response to solar variations is misrepresented
in current theoretical models [10], making this subject one
of the most actively debated in the recent literature.

The intellectually most satisfactory analysis of any dy-
namical system, and, in particular, of the climate system,
corresponds to the case in which its underlying mecha-
nisms can be modeled from first principles. As such, the
GCM approach is preferable in that it allows a deeper
understanding of causes and effects. However, the conclu-
sions drawn from GCM simulations will be continuously
revised insofar as these models are refined and their per-
formances improved. This constitutes a formidable task,
for climate dynamics is extremely complex and not fully
understood: Among other delicate issues, models of the
atmosphere must account for its couplings with the land,
oceans, and associated nonlinear feedbacks, together with
their chemical responses to increased radiation at all wave-
lengths [11]. For such complex systems, an alternative
modeling path is given by data-driven (statistical) tech-
niques. According to this philosophy, the evolution of the
system is studied by recording time series, which are sets
of observations xt collected at regular intervals of time. In
this framework, the modeling task consists in estimating

the function f that is supposed to generate the data via the
equation xt�� � f�xt�, where xt � �xt; xt��; . . . ; xt��d�1���

for some properly chosen time delay � and embedding
dimension d [12] (the state space may include delayed
values of xt only or, in the multivariate case, further
available magnitudes as well). The standard approach is
to choose a nonlinear model family whose free parameters
typically carry no meaningful physical interpretation but
instead provide a suitable (flexible) functional form. In a
second step, this model f is fit to the observed data accord-
ing to a maximum-likelihood or least-squares procedure, a
strategy that then allows us to make concrete predictions
on the system under study. Furthermore, once such an
empirical model has been built, the issue of whether the
dynamics is externally perturbed can be assessed and the
profile of the forcing agent can be accurately estimated, as
we summarize in the following.

We first describe the specific time-series data and frame-
work considered. We have focused on the history of the
past 150 years of (i) instrumental temperature anomalies
(T) from the current Intergovernmental Panel on Climate
Change (IPCC) global time series [13], (ii) the solar total
irradiance (STI) reconstruction by Lean [14], and (iii) the
index of volcanic activity (V) as from Ref. [5]. These
magnitudes, depicted in Figs. 1(a)–1(c), represent the
main natural (as opposed to anthropogenic) components
of the global warming problem. Closing our system of
interest to encompass only the interaction among them,
we have then considered the question of whether this
system is autonomous or externally driven. To this end,
we have resorted to the theory of nonlinear time-series
analysis and applied two independent state-of-the-art
data-driven techniques for driving force reconstruction
[15–18]. To describe the general frame more precisely,
suppose we have recorded measurements from a forced
dynamical system. Its nonstationarity can be parametrized
by a scalar � in a dynamics of the form xt�1 � f�xt; �t�.
The evolution of �t accounts for the effects of either an
external driving force or other internal degrees of freedom
varying on large time scales. It is a remarkable result from
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the theory of nonlinear time-series analysis that it is pos-
sible to reconstruct the variation of a slow driving force
solely from the observations xt, even without any prior
knowledge on the internal dynamics (more precisely, it
was shown in Refs. [17,18] that � and f can be esti-
mated simultaneously if they develop on different time
scales). In our particular case, we have represented the
dynamics according to Tt � f�xt; �t�, with xt �
�hSTIit; hSTIit�5; hVit�, where a bracket h it indicates an
average of the enclosed variable over the interval �t�
5; t� to account for possible delayed effects [19].

The first methodology that we have employed for the
reconstruction of �t can be summarized as follows:
(i) Consider initially that the system is stationary, and set
�t � 0 8 t. Construct from the original records the data
set D whose elements are patterns (Tt, xt, �t � 0), and
randomly split it in disjoint learning L and validation V
sets. (ii) Choose any flexible functional form for f and use
any data-driven fitting approach to build from these data a
global stationary model T � f�x; � � 0�. (iii) Estimate
the smooth � profile that maximally improves the perform-
ance of this stationary model by readjusting its internal
parameters and �t to minimize the prediction error

 EL �
X

i2L

	Ti � f�xi; �i��2 � �
X

i2L

��i�1 � �i�2:

Here the first term is the standard mean square error of f,
and the second term enforces the basic assumption of a
smooth � behavior. (The hyperparameter � fixes the rela-
tive weight of both terms and can be determined as indi-

cated below.) (iv) Stop the simultaneous fitting process
for f and � at the minimum of EV , which corresponds
to the optimal model’s generalization capability. (v) For
the determination of �, repeat the above steps for differ-
ent values of this hyperparameter and choose �opt �

arg min�Emin
V
���. For a more detailed discussion of this

algorithm and an assessment of its very good performance
for driving force estimation, please refer to Ref. [17].

In Fig. 2, we show how the considered dynamical system
has been perturbed during the past 150 years according to
this driving force reconstruction methodology. We have
employed feedforward artificial neural networks (ANNs)
with a 4:10:1 architecture (3� 1 input, 10 hidden, and
1 output units), with sigmoidal activation functions and
trained according to the standard backpropagation rule.
The reported results are robust with respect to architecture
variations (number of hidden units) and average 20 inde-
pendent realizations of this algorithm. Notice that, since
the methodology formulation is univariate in the forcing,
then multiple driving factors, if present, will be represented
by a single scalar. In such a case, �t must be interpreted as
an effective univariate representation of these external
drivers. We have therefore constructed a combined record
that accounts for the positive GHG and negative aerosol
radiative forcing effects [20]. These individual time series
are taken from Ref. [5] and depicted in Fig. 1(d); their sum
is plotted in Fig. 2 for comparison against the reconstructed
driving force. The coincidence is remarkable: The esti-
mated perturbation shadows, within error bands, the evo-
lution of this combined profile. In particular, the steep rise
of the most recent part of this record is well reproduced and
shows that gases originated in anthropogenic activities are
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FIG. 2. Reconstruction of external forcing (thin line) using the
first estimation methodology. Dashed lines embrace 1 standard
deviation. For comparison, the evolution of combined GHG and
aerosol radiative forcing levels is indicated with a thick line.
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FIG. 1. Time-series data employed in this study. Yearly aver-
ages of (a) temperature anomalies (�C), (b) solar total irradiance
(W=m2), (c) equivalent radiative forcing for ice core volcanism
(W=m2), and (d) anthropogenic components (W=m2). Solid
line: Equivalent radiative forcing for CO2 and other well-mixed
trace gases (methane, nitrous oxides, and chlorofluorocarbons).
Dashed line: Direct radiative forcing effect of tropospheric
aerosols (no cloud feedback).
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responsible for affecting the dynamics of global climate
during the past decades.

As a test of this conclusion, we have also employed a
second, independent methodology for driving force recon-
struction [18]. In the following, we summarize its essential
aspects. If we split the available recordings into Nint inter-
vals of M points each, then we can assume that � is
constant within each interval and write

 T�m�t ’ f�x�m�t ; ��m��;

where ��m� is the mean value of the driving force in themth
interval considered, and now t runs only on points of this
interval. For a smooth dependence of f with �, we can
employ a first-order expansion on its second argument
centered in ��k�. Rearranging terms, we obtain

 T�m�t � f�x�m�t ; ��k�� ’
@f
@�
�x�m�t ; ��k��	��m� � ��k��;

which should be valid for intervals k and m close enough
(in practice, they can be taken with a substantial overlap to
fulfill this condition). Some simplifications transform these
equations into a system of the form

 Ek�1
k � Ak�1��k�1

k ; (1)

where Ek�1
k are cross-prediction errors, the coefficients

Ak�1 � h@f@� �x
�k�1�
t ; ��k�1��it are unknown, and ��k�1

k �

��k�1� � ��k� are the quantities of interest. Estimates of
Ek�1
k can be obtained by using any data-driven modeling

approach, and the system (1) can be solved up to the scale
factor A1 and offset ��1�. According to the considerations
above, the steps to reconstruct � are (i) choose a data
segment k containing M iterates and use them to build a
model f�
; ��k��. (ii) Compute Ek�1

k , the average predic-
tion errors on the first-neighboring intervals. (iii) Repeat
the previous steps for all possible k. Finally, (iv) recon-
struct the driving parameter by solving system (1). It has
been previously shown that this algorithm is able to pro-
duce accurate estimates of the driving force profile—for a
more detailed discussion, please refer to Refs. [18,21].

In Fig. 3, we show the external force that, according to
this estimation method, has perturbed global climate dur-
ing the time span under study. In this case, we have
considered Nint � 117 intervals of M � 30 points each
(97% of overlap), and within them we have built local
models of the dynamics using radial basis functions
(RBFs) with 3 centers. The reported results are again an
average of 20 independent realizations of this driving force
reconstruction algorithm and have been smoothed with a
10-point sliding window. The obtained profile is robust
with respect to variations in the intervals’ length and over-
lap, but the number of centers employed in the RBF
modeling must be kept low to avoid overfitting the reduced

databases. In addition, similar results are obtained when
using ANNs instead of RBFs. As Fig. 3 indicates, the
reconstructed driving force again follows the combined
GHG and aerosol radiative forcing profile, although not
as closely as in Fig. 2. As shown in Ref. [17], the first
methodology produces more accurate estimations than this
second one, especially towards the limit of short observa-
tional records. The advantage there is the use of a global
model to reconstruct �, meaning that all available data are
employed simultaneously, while the present method is
based on developing a series of local models on reduced
databases. Taken together, these results suggest a conver-
gence to the evolution of combined GHG and aerosol
radiative effects as the true agent perturbing global tem-
perature dynamics.

Finally, a simpler attribution analysis can be made along
the following lines: Consider the point-by-point prediction
errors made by a model f of measured temperature anoma-
lies Tt:

 Tt � f�xt�: (2)

(Notice that we have not chosen the usual quadratic error.
The reason will be clear below.) If model f is forced by �,
these errors can be approximated, to first order in � around
its mean value ��, by

 

@f
@�
�xt; ���	�t � ���:

For strongly nonlinear functions f, the above partial de-
rivative prefactor can largely fluctuate. However, with the
hypothesis of a mild variation of @f=@�, errors (2) can be
then approximated as roughly proportional to the oscilla-
tions of �t around its mean value. In Fig. 4, we show how
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FIG. 3. Estimated external driving force (thin line) acting on
global climate using the second reconstruction methodology.
The profile of combined GHG and aerosol radiative forcing
effects is again represented with a thick line.
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the prediction errors of a 3:10:1 ANN model of Tt �
f�hSTIit; hSTIit�5; hVit� are distributed [22]. As this figure
illustrates, there is a final rise in this profile that supports
the contention that anthropogenic emissions have been the
main driver of global climate during the past decades. As a
note of caution, it must be emphasized that this linear
approximation of point prediction errors represents only
a reduced analysis that here allows for a more intuitive
approach to the problem under study. Although this strat-
egy can be very useful by quickly giving a hint on the
driving force profile, the obtained portrait will be distorted
in the general nonlinear case. There, the global or local
methodologies described above should be employed as
they properly account for varying partial derivatives of
the dynamics f.

Summing up, in this work we have taken advantage of a
remarkable result from the theory of nonlinear time-series
analysis, namely, that it is in practice possible to estimate
the variation of external driving forces acting on complex
systems even when their internal mechanisms are un-
known, to study the attribution problem in climate change
from a different perspective. Using two independent meth-
odologies for accurate driving force reconstruction and
different data-driven modeling tools, we have presented
evidence that the forcing agent on global climate dynamics
can be consistently identified with the combined effect of
anthropogenic emissions. The present study is particularly
interesting in that it represents a new approach to this
important problem. Furthermore, it is purely data-driven
and thus avoids any possibly unaccounted mechanisms of
first-principles general circulation modeling. We believe
this is a distinctive aspect that can enrich the continuing
debate on the future of our climate.
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