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The interplay between site dilution and quantum fluctuations in S � 1 Heisenberg antiferromagnets on
the square lattice is investigated using quantum Monte Carlo simulations. Quantum fluctuations are tuned
by a single-ion anisotropy D. In the clean limit, a sufficiently large D>Dc � 5:65�2�J forces each spin
into its mS � 0 state, and thus destabilizes antiferromagnetic order. In the presence of site dilution,
quantum fluctuations are found to destroy Néel order before the percolation threshold of the lattice is
reached, if D exceeds a critical value D� � 2:3�2�J. This mechanism opens up an extended quantum-
disordered Mott-glass phase on the percolated lattice, characterized by a gapless spectrum and vanishing
uniform susceptibility.
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Strongly interacting quantum systems on random latti-
ces offer the possibility of realizing genuine quantum
phases with unconventional properties [1]. The inhomoge-
neous nature of such disordered lattices can lead to the
existence of strongly correlated regions with excitations of
arbitrarily low energy, and yet an overall absence of long-
range order. Therefore quantum ‘‘glassy’’ phases are pos-
sible which, at the same time, have a quantum-disordered
ground state and a finite low-energy density of states, not
associated with a Goldstone mode [1–3]. A large variety of
physical systems potentially lends itself to realize this
theoretical scenario as, e.g., 4He films on disordered sub-
strates [4], type-II superconductors with columnar defects
[5], and trapped cold atoms in disordered optical potentials
[6].

In this Letter we numerically demonstrate the emer-
gence of a highly nontrivial interplay between lattice ran-
domness and quantum fluctuations in low-dimensional
antiferromagnets. Disorder can typically be introduced in
antiferromagnets by dilution of the magnetic lattice with
nonmagnetic ions, and an extremely high level of control
on the concentration of dopants can be reached [7]. Recent
experiments on the site-diluted S � 1

2 square-lattice anti-
ferromagnet have shown that the destruction of magnetic
long-range order (LRO) due to doping occurs at the perco-
lation threshold of the lattice [7], suggesting that this
particular system is too far from a quantum-critical point
to develop a quantum-critical regime triggered by site
dilution [8,9]. In this Letter, we consider a realistic mag-
netic model on the square lattice in which the strength of
quantum fluctuations can be tuned at will, driving the
system from a classically ordered state to a quantum
disordered one. Nonlinear quantum fluctuations enhanced
by lattice disorder give rise to a novel quantum-disordered
phase which is gapless and has a vanishing uniform sus-
ceptibility. An exact bosonic mapping of the model allows
us to identify this regime with a Mott-glass phase [3] of a
commensurately filled lattice gas of interacting bosons.

The application of a magnetic field to such a phase drives
it into a disordered Bose-glass phase [1], which maintains a
gapless spectrum but acquires a finite susceptibility.

We investigate the S � 1 square-lattice anisotropic
Heisenberg antiferromagnet (SLAHAF) with site dilution,
whose Hamiltonian reads

 H � J
X
hiji

�i�jSi � Sj �D
X
i

�i�S
z
i �

2 � hJ
X
i

�iS
z
i : (1)

Here S denotes S � 1 spin operators, and hiji enumer-
ates pairs of nearest-neighbor sites on the square lattice.
The variables �i take the values 0 or 1 with probability p
and 1� p, respectively, where p is the concentration of
nonmagnetic dopants. We make use of the stochastic series
expansion quantum Monte Carlo (SSE-QMC) method
based on the operator-loop algorithm [10], which allows
us to faithfully monitor the T � 0 physics by a �-doubling
approach [8] on L� L lattices with L up to 36 sites. The
results are typically averaged over at least 200 disorder
realizations.

In the clean limit p � 0, and at zero magnetic field h �
0, the SU(2) symmetric version of this model for D � 0 is
known exactly to show Néel LRO [11]. The presence of
finite single-ion anisotropy (D> 0) reduces the symmetry
to U(1), and antiferromagnetic ordering takes place in the
xy plane. In the limit D=J	 1 the ground state becomes
j�0i �

Q
ijmS � 0ii to minimize the anisotropy term.

Such a state has no antiferromagnetic order, since all
spin-spin correlation functions are simply zero. There-
fore, at a critical ratio �D=J�c a quantum phase transition
[12] occurs between the xy-ordered regime and a gapped
spin-liquid state with short-range correlations. Our QMC
simulations of Eq. (1) with h, p � 0 provide an estimate of
�D=J�c � 5:65�2�J, obtained by linear scaling of the cor-
relation length for the x�y� spin components �xx�yy� 
 L.
The quantum-critical scaling of the static structure factor
Sxx�yy���;�� 
 L�=��z at the above point satisfies the ex-
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pected 3D XY universality class with � � 1:32, � � 0:67,
and z � 1 [13].

A better insight into the nature of the quantum phase
transition tuned by the anisotropy is achieved by exactly
mapping the spins onto bosons through the Holstein-
Primakoff (HP) transformation S�i �

�������������������
1� ni=2

p
bi and

Szi � 1� ni (together with a � rotation of one of the two
sublattices), which gives
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�i�D�ni�1�2�hJni

(2)

Here ni � byi bi � 0, 1, 2 is the dynamically constrained
occupation number, and Jij � J�i�j prevents bosons from
hopping onto doped sites and from experiencing repulsion
from those sites. It is evident that, apart from the square-
root terms in the hopping Hamiltonian, the model of
Eq. (2) is a Bose-Hubbard model with soft-core interac-
tions, allowing for up to 2 particles per site. For h � 0 the
Z2 symmetry of the spin model translates into a particle-
hole symmetry of the bosonic model, which implies that
the system is exactly half-filled, hnii � 1. Interestingly,
this still holds true in the presence of site dilution, which
does not alter the particle-hole symmetry of the
Hamiltonian. The anisotropy term D of the spin model
translates into an on-site repulsion for the HP bosons, such
that the transition driven by increasing D=J can be under-
stood as a superfluid-to-Mott-insulator (SF-MI) transition
driven by the ratio between repulsion and hopping [1]. The
observed �d� 1� � XY universality class is expected for a
commensurately filled lattice [1].

Introducing site dilution into the Hamiltonian equa-
tion (1) hence offers the intriguing opportunity of studying
disorder effects on a SF-MI transition, both at commensu-
rate (h � 0) and at incommensurate fillings (h � 0) [14].
In this Letter, we mainly focus on the h � 0 regime, and
we will discuss the case of h � 0 in a forthcoming pub-
lication [16]. Moreover, the model of Eq. (1) lends itself to
studying the behavior of antiferromagnetic order around
the percolation threshold of the site-diluted square-lattice
p � p� � 0:407 253 . . . [17] under continuous tuning of
the strength of quantum fluctuations. In the limit D � 0, it
has been demonstrated numerically that the S � 1 SLHAF
on a site-diluted lattice retains LRO up to the percolation
threshold [18]. The system at finite p and finite D inter-
polates then between the 3D� XY transition at p � 0 and
the percolation transition at D � 0.

In Fig. 1, we show the complete phase diagram of the
system in the p�D plane at T � 0 and h � 0. The
boundary lines are estimated as above, using the criterion
�xx�yy� 
 L. This phase diagram indicates that the interplay
between disorder and quantum fluctuations leads to a
dramatic departure both from the SF-MI transition at p �

0 and from the percolation driven transition at D � 0. Let
us start from the limit D � 0, and focus on the behavior of
the system at the percolation threshold p � p�. Here we
clearly observe that, upon increasing the ratio D=J, the
transition line from magnetic LRO to disorder passes
through a multicritical point at �D=J�� � 2:3�2�, beyond
which it departs from the percolation threshold p � p� and
bends toward systematically smaller p values for larger
D=J. Starting from the opposite limit p � 0, we observe
that an infinitesimal amount of disorder leads to a shift to
lower values of the critical anisotropy �D=J�c that causes
the destruction of LRO. Putting together these two pieces
of information, we can conclude that for any finite disorder
concentration p there is a nontrivial disorder-dependent
value of the anisotropy �D=J�c;p < �D=J�c;0 at which non-
linear quantum fluctuations, enhanced by the reduced con-
nectivity of the diluted lattice, are able to destroy the LRO.

The interplay between disorder and quantum fluctua-
tions can be quantitatively understood in the relevant limit
of p � p�. At this point, the percolating nature of the
largest cluster in the system crucially depends on 1D links
connecting quasi-2D islands with higher local connectivity
(blobs) [19]. For D=J well below �D=J�c;0, the quasi-2D
blobs have a well-defined staggered moment (see Fig. 2)
which fluctuates with a characteristic frequency given by
the finite-size gap of the blob if the blobs are disconnected.
When the blobs are connected by links to form the perco-
lating cluster, their local staggered moments are either
long-range correlated or not, depending on the decay of
correlations along the 1D links [20]. If the characteristic
length l0 of the 1D links is shorter than the correlation
length �1D for the S � 1 anisotropic Heisenberg model of
Eq. (1) on a chain, the links are able to establish 2D LRO in
the system. Otherwise the blobs are uncorrelated, and the
system enters a quantum-disordered phase. An earlier de-
tailed study [19] of the geometry of the percolating cluster
reports an average link length hl0i � 2:7 for site percola-
tion on the square lattice. We have studied the correlation
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FIG. 1 (color online). Phase diagram of the site-diluted S � 1
SLHAF. The magnetic phases (and the corresponding bosonic
ones) are indicated. QD � quantum disordered. The mean-field
(MF) line corresponds to the low-dilution limit �D=J�c;p �
�D=J�c;0�1� p�.
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properties of the anisotropic Hamiltonian Eq. (1) on a
chain with the SSE-QMC method, systematically estimat-
ing the one-dimensional equal-time correlation length �1D

as a function of the anisotropy D=J. According to the
above argument, the loss of LRO on the percolating cluster
should occur for �D=J�� such that �1D��D=J�� � hl0i. This
criterion leads to the estimate �D=J�� � 2:2 (Fig. 2), which
is in excellent agreement with the location of the multi-
critical point estimated by QMC calculations, as shown in
Fig. 1. Hence we quantitatively understand the deviation of
the magnetic transition from percolation in terms of a
critical enhancement of local quantum fluctuations on the
weak links of the percolating cluster. This is also depicted
in Fig. 2(b), representing the local susceptibility on a
lattice at the percolation threshold: for �D=J�< �D=J��

the local response of the system is nearly homogeneous,
while for �D=J�> �D=J�� the 1D links show a strongly
suppressed response due to freezing in a nearly mS � 0
state.

When p & p�, the links joining quasi-2D islands ac-
quire a higher connectivity, evolving from single chains to
decorated chains or ladders. At the critical value �D=J�c;p
for p & p� the correlation length on the quasi-1D links
becomes comparable with their average linear size, analo-
gous to what happens at p � p�. For weak dilution p�
p�, on the other hand, the disordered lattice can be ap-
proximately represented as a homogeneous lattice with
reduced effective coordination zeff � z�1� p�, corre-
sponding to the Hamiltonian of Eq. (1) in which the
random variables are substituted by their average h�ii �
1� p. In this case the critical value �D=J�c;p should be
linearly shifted by the disorder with respect to the p � 0
case, �D=J�c;p � �1� p��D=J�c;0, which is in very good
agreement with our data for p & 0:05 (see Fig. 1).

The deviation of the magnetic transition from the perco-
lation transition opens a novel quantum-disordered phase
that exists on percolated lattices with connectivities arbi-
trarily close to the clean system as D=J ! �D=J�c;0. This
phase has remarkable unconventional properties, as evi-
denced by its response to a uniform magnetic field. In
Fig. 3(a) we show the low-temperature uniform suscepti-
bility �u�T ! 0� for representative points in the disordered
phase, contrasted with the behavior in the gapped phase at
p � 0. It is observed that �u�T ! 0� tends to 0, as in a
phase with a singlet ground state, so that, in the bosonic
language, this phase is incompressible at T � 0. Yet the
specific temperature dependence of �u appears to follow
an unconventional exponential law �u�T� 
 exp��

����������
�=T

p


for more than two decades of the QMC data. This is clearly
different from the conventional behavior (
 exp���=T)
expected in the presence of a finite singlet-to-triplet gap �.
To probe this gap directly, we study the response of the
system to small but finite uniform fields. Figure 3(b) shows
the low-field magnetization curve of the system in the
quantum-disordered phase. This is strong numerical evi-
dence that the magnetization is finite for arbitrarily small
fields, although it grows slowly with h, following the

FIG. 2 (color online). (a) Ground-state correlation length of
the S � 1 anisotropic Heisenberg antiferromagnet on the chain
as a function of the anisotropy. (b) Local susceptibility �loc;i �R�

0 d�hS
z
i �0�S

z
i ���i on a 40� 40 lattice at the percolation thresh-

old p � p�, with anisotropy below and above �D=J�� � 2:2.
�loc;i � 0 corresponds to empty sites.
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FIG. 3 (color online). (a) Uniform susceptibility for various
points in the Mott-glass phase, contrasted with the case of a point
in the gapped phase for p � 0 (system size: L � 36).
(b) Uniform magnetization upon application of a weak field in
the Mott-glass phase at p � 0:2, D=J � 4:4. In the inset: differ-
ent magnetization curves starting from the XY ordered phase
(D=J � 3), Mott-glass phase (D=J � 4:4), and QD gapped
phase (D=J � 5:8). For D=J � 3 we have plotted m=2, and,
for D=J � 5:8, h is rescaled by a factor of 3. Here L � 28 and
p � 0:2.
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unconventional exponential behavior m�h� 
 exp��A=h
over approximately two decades of the QMC data. The
magnetization clearly shows that the singlet-to-triplet gap
vanishes even at h � 0, and this observation is still com-
patible with a vanishing uniform susceptibility for h � 0
because �u � dm=dh
 h�2 exp��A=h ! 0 for h! 0,
but it is nonzero for any finite h. The magnetization curve
in the novel disordered phase contrasts with the linear
behavior of m�h� when starting from the XY ordered phase
and with the gapped behavior when starting from the Mott
insulating phase (inset of Fig. 3). The exponential
T dependence of �u and h dependence of m can be fully
captured by a simple effective model in which the response
to a weak field is given by independent clean regions of the
percolating cluster, whose exponentially rare statistics re-
flects itself in the exponentially small response functions
[15,16]. The gapless nature of the spectrum is a property of
the entire novel disordered phase for �D=J�c;p � D=J �
�D=J�c;0. In fact, for any p one can always find an arbi-
trarily large (albeit rare) clean region which locally ap-
proximates the behavior of the clean square lattice and
which has consequently local excitations at arbitrarily
low energy as long as D=J � �D=J�c;0.

To summarize, we have seen evidence of an incompress-
ible, yet gapless phase of the system. The amorphous
nature of this disordered phase and its rich low-energy
dynamics make it akin to glassy phases, and at the same
time its incompressibility, along with the commensurate
filling of the lattice, bears a strong resemblance to a Mott
insulating phase. Hence it can be called a Mott glass, a
name that has been used in the recent literature for dirty-
boson models at commensurate filling [3] in analogy with a
phase of disordered fermions having the same thermody-
namic and spectral signatures [2]. Moreover, for any finite
h the ground-state phase acquires a finite susceptibility,
namely, the Mott-glass phase is driven into a Bose glass [1]
which is disordered, gapless, and compressible [16].

The occurrence of a bosonic Mott-glass phase in the site-
diluted S � 1 antiferromagnet with single-ion anisotropy
is well understood within the bosonic mapping of Eq. (2)
[3]. In particular we wish to stress that the Hamiltonian of
Eq. (1), both in its clean and disordered form, is a reliable
description of the magnetic degrees of freedom in strongly
anisotropic S � 1 antiferromagnetic insulators with and
without doping. In fact, the gapped quantum-disordered
state induced by the large anisotropy term is realized in a
variety of Ni-based compounds, such as Ni�C5H5NO�6�
�NO3�2 [21], �Ni�C5H5NO�6�ClO4�2 [22], and the more
recently investigated NiCl2 � 4SC�NH2�2 [23]. These sys-
tems have in general a three-dimensional magnetic lattice,
but the results we have shown for the 2D case can be
generalized straightforwardly to 3D. Moreover one can
imagine tuning the D=J ratio experimentally by applying
hydrostatic pressure to the crystals.

The Z2 symmetry of the magnetic Hamiltonian in zero
field for all these systems translates into particle-hole
symmetry and commensurate (unit) filling of the soft-
core bosons on any lattice site, regardless the geometry
of the lattice itself, namely, also on random percolating
clusters. This ingredient, which is crucial for the existence
of the Mott glass, appears hard to achieve in systems of real
bosons, as, e.g., in bosons in optical lattices, where the
introduction of disorder will invariably change the particle
occupation near lattice defects.
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