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It is shown that ultrasound in the gigahertz range can generate space-time Rabi oscillations between
spin states of molecular magnets. We compute dynamics of the magnetization generated by surface
acoustic waves and discuss conditions under which this novel quantum effect can be observed.
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Quantum mechanics of a spin cluster (e.g., a magnetic
molecule) embedded in a solid is determined by the crystal
field. The latter depends on the symmetry of the cluster and
its environment [1]. Crystal field Hamiltonians provide a
good description of molecular magnets at low temperature.
For instance, dynamics of a spin S that prefers to look up or
down along the anisotropy axis of the cluster can be
described by a Hamiltonian H � �DS2

z , where the an-
isotropy constant D arises from spin-orbit interactions. We
are interested in the effect of the mechanical rotation of the
crystal on the molecular spin. For a similar problem in-
volving an orbital moment L, it is well known from
classical mechanics that in the reference frame rotating at
an angular velocity � the Hamiltonian acquires a term
�@L �� (we use dimensionless L and S). The same rule is
expressed by the Larmor theorem in classical electrody-
namics: Rotation is equivalent to the magnetic field, lead-
ing to the effective Zeeman term, �M � B, in the rotating-
frame Hamiltonian, with M � @�L, B � �=�, and �
being the gyromagnetic ratio. The extension of the
Larmor theorem to a spin is a consequence of the fact
that in relativistic quantum theory the generator of rota-
tions is Ĵ � L̂� Ŝ. Rigorous derivation of the term
��L̂� Ŝ� �� in the Hamiltonian can be obtained, e.g.,
from the study of the nonrelativistic limit of the Dirac
equation in the rotating frame [2].

Equivalence of the rotation to the magnetic field ex-
plains Barnett effect [3]: Rotation of a body of the mag-
netic susceptibility � at an angular velocity � generates a
magnetic moment M � ��=�. The ‘‘spin-rotation cou-
pling,’’ �@S ��, can also lead to nontrivial quantum
effects. Consider, e.g., a spin cluster with the Hamilton-

ian Ĥ � �DŜ2
z that preserves the direction of the spin

along the anisotropy axis Z due to commutation of Ĥ with
Ŝz. In the presence of the rotation about, e.g., the x axis of
the crystal the Hamiltonian in the rotating frame becomes

Ĥ
0
� �DŜ2

z � @Ŝx�. This Hamiltonian, unlike Ĥ , does
not commute with Ŝz and, therefore, allows transitions
between the two orientations of S along the anisotropy
axis. Thus, rotation alone can induce quantum transitions
between spin states that are prohibited by the Hamiltonian

of a stationary system Ĥ . We should emphasize that

switching from the laboratory-frame Hamiltonian Ĥ to

the rotating-frame Hamiltonian Ĥ
0
� Ĥ � @Ŝ �� does

not introduce any new spin-lattice interactions in addition
to the crystal field. It is just another method to obtain a
solution of the problem, which, in the laboratory frame,
requires introduction of the time dependence of the crystal

field; e.g., Ĥ � �DŜ2
z , in the presence of rotation, be-

comes Ĥ � �D�n�t� � Ŝ�2 with n�t� being the instanta-
neous direction of the anisotropy axis.

So far, quantum spin-rotation effects received little at-
tention because only a very tiny magnetic field due to
rotation can be produced in the rotating frame of a macro-
scopic body. Consequently, the corresponding quantum
effects have very low probability. This Letter is based
upon the observation that local rotations of the crystal
lattice produced by high-frequency ultrasound can easily
provide 10–100 G fictitious fields in the rotating frame of a
rigid spin cluster in a solid. Indeed, in the presence of the
phonon displacement field u�r; t�, the angle of the local
rotation of the crystal lattice ���r; t� and the correspond-
ing angular velocity ��r; t� are given by [4]

 ���r; t� � 1
2r	 u�r; t�; ��r; t� � 1

2r	 _u�r; t�: (1)

For a transverse sound wave of frequency f
 3 GHz and
amplitude u0 
 1 nm, this gives B � �=�
 10 G in the
rotating frame coupled to the local crystallographic axes.
Even greater local fields can be achieved with surface
acoustic waves that have been recently used in experiments
on molecular magnets [5].

The equivalence of the effect of high-frequency trans-
verse acoustic waves to the effect of high-amplitude ac
magnetic field on paramagnetic spins immediately sug-
gests that one can try to generate Rabi spin oscillations
with the help of high-frequency ultrasound. Rabi effect [6]
corresponds to the oscillation of the occupation numbers of
two quantum levels in the presence of an ac field whose
frequency is close to the distance between the levels. On
resonance, the frequency of Rabi oscillations is propor-
tional to the amplitude of the ac field. The effort to observe
Rabi oscillations between quantum states of molecular
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magnets in experiments employing ac magnetic fields [7–
10] has been going on for some time. For such experiments
to succeed, the Rabi frequency must be greater than the
spin decoherence rate. This typically requires the ampli-
tude of the ac field to be greater than 1 G, which is not easy
to achieve with electromagnetic waves but, as we have
seen, is possible with surface acoustic waves. Note that
the condition of the validity of the elastic theory u0 � �
(where � is the phonon wavelength) automatically pro-
vides the condition �� ! � 2�f, which allows one to
treat local rotations classically while treating the two-level
system with level separation @! quantum mechanically.

For certainty we consider a crystal of molecular magnets
with the anisotropy Hamiltonian

 Ĥ A � �DŜ
2
z � V̂; (2)

where V̂ is a small term responsible for the tunnel splitting
� of spin-up and spin-down states. The spin cluster is
assumed to be more rigid than its elastic environment, so
that the long-wave crystal deformations can only rotate it
as a whole but cannot change its inner structure responsible

for the parameters of the Hamiltonian Ĥ A. This approxi-
mation should apply to many molecular magnets as they
typically have a compact magnetic core inside a large unit
cell of the crystal. We choose geometry in which surface
acoustic waves are running along the x axis with the solid
extending towards y > 0; see Fig. 1. Using standard for-
mulas [4] for the displacement field in a surface acoustic
wave, one obtains

 ���r� �
1

2

!
ct
u0e

�kty cos�kx�!t�ez � ���x; t�ez; (3)

where ! � ctk�, kt � k
��������������
1� �2

p
, � is a real number be-

tween 0 and 1 satisfying

 �6 � 8�4 � 8�3

�
3� 2

c2
t

c2
l

�
� 16

�
1�

c2
t

c2
l

�
� 0; (4)

and ct;l are velocities of transverse and longitudinal sound.
In the presence of deformations of the crystal lattice,

local anisotropy axes defined by the crystal field are rotated
by the angle given by Eq. (3). In the Hamiltonian, this
rotation is equivalent to the rotation of the operator Ŝ in the
opposite direction, which can be performed by the �2S�
1� 	 �2S� 1� matrix in the spin space [11],

 Ŝ! R̂�1Ŝ R̂; R̂ � eiŜ���: (5)

The spin Hamiltonian in the laboratory frame becomes

 Ĥ � e�iŜ���Ĥ Ae
iŜ���: (6)

In order to find the laboratory-frame wave function j�i, it
is useful to introduce the lattice-frame wave function
j��lat�i, defined through the unitary transformation

 j��lat�i � ei���Ŝj�i: (7)

Differentiating it on time it is easy to see that this function
satisfies the Schrödinger equation with the lattice-frame
Hamiltonian

 Ĥ �lat� � Ĥ A � @Ŝ �� (8)

where

 � �
@��
@t
�

1

2

!2

ct
u0e

�kty sin�kx�!t�ez: (9)

To this point we have not made any assumptions about the
magnitude of ��, so that the equations (6) and (8) are
exact. An interesting observation for the comparison of the
effects of ultrasound and ac magnetic field is that the
Hamiltonian (8) resembles the Hamiltonian of a particle
of spin Ŝ in the ac magnetic field which amplitude scales as
the square of the frequency.

We are interested in the Rabi oscillations between the

two lowest states of Ĥ A:

 j�i �
1���
2
p �jSi  j � Si�; (10)

where jSi satisfy ŜzjSi � SjSi. It makes sense,
therefore, to project our Hamiltonian on the jSi states,
making the problem essentially a two-state problem. This
gives

 ĥ �lat�
eff � �

�

2
�̂1 � @!R sin�kx�!t��̂3; (11)

where � is the energy distance between the ground state
j��i and the first excited state j��i, �̂1 � jSih�Sj�
j�SihSj, �̂3 � jSihSj � j�Sih�Sj, and

 !R �
1

2ct
!2u0Se

�kty: (12)

The two-state approach will be valid if � and @! are small
in comparison with the distances to other spin levels. Note
that the tunnel splitting � originates from the term V̂ in

Ĥ A that does not commute with Ŝz.
It is easy to check that at !
�=@, which is our case of

interest for consideration of Rabi oscillations, the second
term in Eq. (11) is small compared to the first term as long
as the wavelength of the acoustic wave satisfies �� Su0.
For a not very large S this condition is always fulfilled by
surface acoustic waves. The approximate eigenstates of the
problem are then the eigenstates of �1 given by Eq. (10).FIG. 1 (color online). Geometry of the problem.
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Their energies are �=2. The second term in Eq. (11)
produces transitions between these states, resulting in the
Rabi oscillations when @! ’ �. The standard way to ob-
tain the evolution of the wave function is to apply the
rotating wave approximation [6]. Note that the coordinates
x and y in Eq. (11) can be viewed as parameters. Express-
ing the wave function as

 j��t��lat�i � C��t�j��i � C��t�j��i; (13)

and starting with C��0� � 0, C��0� � 1 at t � 0; x � 0,
one obtains
 

C��t� �
!R

�R
e��i=2�!t sin

�
�Rt

2

�
;

C��t� �
�

cos
�
�Rt

2

�
� i

�=@�!
�R

sin
�

�Rt
2

��
e�i=2�!t;

(14)

where

 �R �
��������������������������������������
��=@�!�2 �!2

R

q
: (15)

Assuming that every spin was in the ground state j��i
before the sound wave arrived, the spatial dependence of
the wave function can be obtained by making a replace-
ment t! t� kx=! in Eq. (14). In the absence of spatial
derivatives in the Hamiltonian (11), j��t��lat�i is defined up
to the phase factor exp�i	�x; y�� with 	 being an arbitrary
real function of coordinates. From Eq. (7) the wave func-
tion of the system in the laboratory frame is j�i �
e�i���Sj��lat�i. Because of the smallness of ��, the dy-
namics of j�i essentially coincides with the dynamics of
j��lat�i and is given by Rabi oscillations between the states
j�i at the frequency �R. This is confirmed by numerical
calculations with the lattice-frame and laboratory-frame
Hamiltonians; see Fig. 2.

The expectation value of the projection of the spin onto
the anisotropy axis (the Z axis) is given by
 

h��t�jŜzj��t�i � 2S
!R

�2
R

��
!�

�

@

�
sin�!t� kx�

	 sin2

�
1

2
��Rt� KRx�

�

�
1

2
�R cos�!t� kx� sin��Rt� KRx�

�
;

(16)

where KR � ��R=!�k� k can be called the ‘‘Rabi’’
wave vector. Thus, the space-time Rabi oscillations of
the occupation numbers of spin states generate space-
time oscillations of the magnetization of the crystal. On
resonance, when ! � �=@, Eq. (16) simplifies to

 h��t�jŜzj��t�i � S cos�kx�!t� sin�!Rt� kRx�; (17)

with kR � �!R=!�k� k. The condition!R � ! (Su0 �

�) implies that the time dependence of hŜzi at any point in

space consists of the oscillations at frequency ! with beats
of frequency !R. Similarly, hŜzi at any moment of time
oscillates in space with the wave vector k and exhibits beats
with the wave vector kR � k.

Our conclusions can be checked by obtaining the full
solution of the problem in the laboratory frame in a par-
ticular case of a biaxial symmetry, when V̂ in Eq. (2) equals
E�Ŝ2

x � Ŝ
2
y�. In this case Eq. (6) reduces to

 Ĥ � �DŜ2
z �

E
2
fŜ2
�e�2i���x;t� � Ŝ2

�e2i���x;t�g; (18)

where Ŝ � Ŝx  iŜy. The second term can be treated as a
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FIG. 2 (color online). Time dependence (t0 � t�=@) of the
probability to find the spin in the state j��i at x � 0, S � 10,
!R � 0:1!, and ! � 0:9��=@� in the laboratory frame. Dotted
red line: Numerical result for the laboratory-frame Hamiltonian
(19). Dashed blue line: Numerical result obtained with the use of
Hamiltonian (11). Solid black line: Analytical result obtained
with the use of Eq. (14).

20 40 60 80
t’

5

10

5

10

Sz

FIG. 3 (color online). Time dependence (t0 � t�=@) of the
expectation value of the projection of the spin on the anisotropy
axis at x � 0, S � 10, !R � 0:1!, and ! � 0:9��=@�. Dotted
red line: Numerical result for the laboratory-frame Hamiltonian
(19). Dashed blue line: Numerical result obtained with the use of
the lattice-frame Hamiltonian (11). Solid black line: Analytical
result obtained with the use of Eq. (16).
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perturbation provided that E� D. At !� �2S� 1�D=@
the dynamics of the wave function involves only a super-
position of the jSi states. As in the lattice-frame consid-
eration, it is then convenient to project the Hamiltonian
(18) onto these two states. In order to obtain such an
effective two-state Hamiltonian that accounts for the tun-
nel splitting of the lowest energy states, one must apply
perturbation theory for the degenerate states jSi to the
Sth order [1]. This results in

 ĥ eff � �
�

2
fe2iS���x;t�jSih�Sj � e�2iS���x;t�j � SihSjg:

(19)

Here � � 8D�2S�!��S� 1�!��2�E=8D�S is the tunnel split-
ting for the biaxial model in the absence of lattice distor-
tions [12]. Numerical solution for hŜzi that follows from
Eq. (19), and its comparison with the analytical solution
given by Eq. (16), are illustrated in Fig. 3. The beats
discussed above are clearly seen in the figure.

We shall now discuss conditions under which the above
effects can be observed. First, we notice that the Rabi
oscillations of hŜzi generated in a crystal of molecular
magnets by ultrasound, contrary to the Rabi oscillations
generated in a small crystal by an electromagnetic wave,
will have a pronounced wave dependence on coordinates
so that hŜzi averaged over the wavelength of the sound �
will be zero. Consequently, measurements of the oscilla-
tions of hŜzi should be done on the scale that is small
compared to �. Secondly, the decoherence rate should be
lower than the Rabi frequencies involved. The lower bound
on the decoherence due to spin-lattice interactions can be
estimated as the spin-phonon relaxation rate. For the
tunnel-split states with the splitting in the gigahertz range,
it is in the kilohertz range [11]. For the rate of transitions
between adjacent Sz states in molecular magnets, the pre-
factor in the observed Arrhenius relaxation law provides an
estimate of order 10 MHz [13]. For the Rabi frequency at,
e.g., f � 3 GHz, u0 � 1 nm, S � 10, and ct � 103 m=s,
one obtains !R 
 2 GHz� ! � 2�f 
 20 GHz.

When Rabi oscillations are driven by the external acous-
tic wave, the latter should force the phase coherence upon
the spin system. This should eliminate concern that phases
of individual spins are decohered by dipolar fields.
However, to provide the resonance condition, the broad-
ening of the level splitting due to dipolar fields should be
small compared to @!
�. If it is not, the tunnel splitting
� should be increased by applying a transverse magnetic
field. Mn-12 is, probably, not the best system, as it exhibits
wide distribution of � due to large dipolar fields and
internal disorder. Ni-4 where the resonant interaction of
electromagnetic radiation with tunnel-split states was
achieved in the gigahertz range [9] may be a promising

candidate for observing acoustic Rabi oscillations. Note
that, in principle, surface acoustic waves of frequency as
high as 100 GHz have been generated in experiment [14].
However, since !R / !2, raising ! significantly may
eventually violate the condition !R � ! under which
our results were derived.

In conclusion, we have shown that transversal acoustic
waves in the gigahertz range provide spin-rotation cou-
pling that can be used to generate space-time Rabi oscil-
lations in molecular magnets. When frequency of
ultrasound ! equals the distance between tunnel-split
spin states, the magnetization on the surface of the crystal
oscillates as hŜzi � S cos�kx�!t� sin�!Rt� kRx�, where
!R � !2u0S=�2ct� and kR � �!R=!�k, with u0 and ct
being the amplitude and the speed of the sound,
respectively.
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