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Phase shifts for single-channel elastic electron-atom scattering are derived from time-dependent density
functional theory. The H� ion is placed in a spherical box, its discrete spectrum found, and phase shifts
deduced. Exact exchange yields an excellent approximation to the ground-state Kohn-Sham potential,
while the adiabatic local density approximation yields good singlet and triplet phase shifts.
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Modern density functional theory (DFT) [1–3] has
proven very successful in quantum chemistry and solid-
state physics. The time-dependent formulation, TDDFT
[4], extends this success to excited-state properties [5].
Thus, excitation energies and oscillator strengths of elec-
tronic transitions of atoms, molecules, and clusters are now
routinely calculated via TDDFT within, e.g., the adiabatic
local density approximation (ALDA) [6]. But such calcu-
lations are almost exclusively for optical response to either
weak [5] or strong [7] fields.

The problem of calculating low-energy elastic electron
scattering from atoms and molecules is demanding, and
solving the Schrödinger equation for continuum states of
polyatomic molecules can be expensive. However, such
solutions are needed for the emergent field of electron-
impact chemistry [8], especially since recent experiments
show that low-energy electrons can cleave DNA [9,10].
Through efficient use of R-matrix theory, calculations
within static exchange (amounting to scattering from an
effective one-body potential) have been performed for a
single DNA base [11]. A TDDFT approach could prove
highly useful here, allowing the incorporation of correla-
tion effects with little additional cost beyond the original
scattering calculation.

With this ultimate goal in mind, we demonstrate a
simple method for using TDDFT to calculate phase shifts.
We find the continuum states of the N � 1-electron prob-
lem, where the target has N electrons. Our method is
extremely practical in spherical cases, such as atoms. It
is based on a little-used formula [12–16] (exact for finite-
ranged potentials) that relates the phase shift of the con-
tinuum problem to discrete energies of the same potential,
but placed inside a box whose edge is beyond the range of
the potential. This formula bypasses many of the compli-
cations of our original work [17], as now we need only find
bound-bound transition energies, where TDDFT has al-
ready proven successful. Furthermore, since our general
approach requires that the N � 1-electron system be
bound, by putting the system in a box, our new method

can be applied, at least in principle, even when the ‘‘ground
state‘‘ of the N � 1-electron system is only a resonance.

A vital element in any DFT approach is the accuracy of
approximate functionals used. In this sense, electron scat-
tering from the H atom is a very severe test, since H� (the
N � 1-electron system) is so strongly correlated. The
underlying ground-state Kohn-Sham (KS) potential is cru-
cial to any TDDFT calculation, especially for atoms, and is
known essentially exactly for H� [18]. We find that exact
exchange, as calculated in an optimized effective potential
(OEP) code, yields very accurate KS phase shifts, i.e., very
close to those of the known exact KS potential. Next, we
show that the ALDA, the workhorse of TDDFT, yields very
good shifts for both singlet and triplet (TD-spin-DFT)
scattering. Thus, we demonstrate that a simple formalism
allows scattering calculations from TDDFT, that modern
approximations yield sufficiently accurate ground-state
potentials, and that standard TDDFT approximations are
sufficiently accurate. We perform the first such calculation
on the prototype target, the H atom.

We begin with some exact observations about scattering
from a potential. Consider a spherical potential that has a
finite range, i.e., v�r� � 0 beyond some radius Rc. Now
imagine inserting a hard wall at any Rb > Rc, not neces-
sarily far beyond Rc, and solving for the bound states. Any
such solution is in fact a solution to the original scattering
problem that happens to have a node right at Rb. Study of
the wave function between Rc and Rb to identify the phase
shift yields

 tan��l�� � �jl�k�Rb�=�l�k�Rb�; (1)

where jl and �l are the two free-space solutions to the
radial Schrödinger equation, i.e., the spherical Bessel and
von Neumann functions, k� �

���������
2E�
p

, and E� is the �th
eigenenergy. For s-wave scattering, Eq. (1) reduces to

 �� � �k�Rb � �� �l � 0�: (2)

The phase shifts are only determined modulo �, but we
have added ��, the free-particle value of k�Rb, so that all
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shifts are relative to 0. For any given l and Rb, this method
yields the phase shift at a discrete set of energies. For a
fixed potential, starting from any Rb value, R0, one can
continuously increase Rb to about 2R0 and generate � at all
energies above a minimum Emin �

1
2 ���� �n�=Rb�

2,
where Rb is the largest box used. Usually R-matrix theory
is more convenient, as it does not require the wave function
to have a node at the box radius, and so all energies can be
found with just one value of Rb. But it relies on knowing
the logarithmic derivative of the wave function at Rb,
which is not available in TDDFT.

To illustrate the method, and show how useful the exact
ground-state KS potential is, in Fig. 1 we plot accurate
quantum calculations for both singlet and triplet elastic
scattering from hydrogen [19]. We also plot the result of
potential scattering from the exact ground-state KS poten-
tial of H�. This was found by Umrigar and Gonze [18],
from an extremely accurate quantum Monte Carlo calcu-
lation for the ground state of H�, calculating the density,
and finding �s�r� by inverting the KS equation. We ob-
tained the positive orbital energies [necessary to evaluate
Eq. (2)] from a well-established fully numerical spherical
DFT code, which includes the OEP method and has been
supplemented by the option to insert a hard wall at a
distance Rb from the origin [20].

The KS phase shift fits between the two curves, just as
the pure KS orbital energy differences lie between singlet
and triplet excitations for He [21,22]. The calculations at
two values ofRb demonstrate the results are independent of
Rb. We choose the wall far from the origin to ensure the
self-consistent ground-state results are not affected by its
position and to approach zero energy, but we emphasize the
fact that Eq. (2) is exact for any Rb > Rc.

Obviously, the decay of the ground-state KS potential is
crucial to the accuracy of this method, and in any practical
application, the exact KS potential is unavailable.
Therefore we study the behavior of two approximate po-
tentials, exact exchange (OEP) and the local density ap-
proximation (LDA). In Fig. 2, we plot both the exact and
approximate KS potentials for H�. The LDA potential is
far too shallow, a well-known failing of most commonly
used approximations to ground-state DFT. The true self-
consistent LDA potential does not support any bound
states, so to obtain the potential we put the system in a
large box, forcing the states to be bound [23]. Thus, the
LDA potential is utterly unsuitable for this type of calcu-
lation. On the other hand, the exact exchange potential
decays correctly as r! 1, missing only the small positive
correlation potential for small r. Many modern R-matrix
based methods start with the nuclear potential and the pure
electrostatic (i.e., Hartree) potential, and then add the LDA
exchange potential from DFT, i.e., the Slater contribution
that decays exponentially, as n1=3�r�. Since this potential
misses the correct asymptotic behavior, vXC�r� ! �1=r, a
‘‘polarization‘‘ potential must be added [24]. Our KS
potentials, either exact or exact exchange, already have
the correct asymptotic behavior; i.e., they contain the
polarization potential. Without this feature, our KS poten-
tials would have the wrong asymptotic behavior, and would
not be long ranged for neutral atoms. In Fig. 3, we plot the
scattering from the exact and exact exchange potentials,
demonstrating that exact exchange, as is now available in
many codes [25], is perfectly adequate for this purpose.

To go even further, e.g., to account for singlet-triplet
splitting, we must use TDDFT. Within the formalism of
TDDFT within linear response we can, in principle, obtain
the true singlet and triplet excitation energies, and thus the
phase shifts. We label all single-particle excitations from
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FIG. 1. Accurate quantum chemical singlet and triplet s-phase
shifts [19], together with the KS values, calculated with a wall at
23 a.u. and at 100 a.u..
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FIG. 2. The exact, exact exchange, and LDA KS potentials for
H�.
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the ground to unoccupied excited states via q � �i; a�,
where i implies occupied, a implies unoccupied, and define
�q��r� � ��i��r��a��r�, where � is a spin index and�i�r�
is an eigenstate of the ground-state vS�r�. Casida [26] cast
the TDDFT response equations as an eigenvalue equation

 

X

q0

~�q�q0�0 �!�aq0� � !2aq�; (3)

where

 

~� q�q0�0 �!� � !2
q��qq0���0

� 2
��������������������
!q�!q0�0
p

hq�jf��
0

HXC�!�jq
0�0i; (4)

and hq�jf��
0

HXC�!�jq
0�0i is the matrix element of the

Hartree-XC kernel in the set of functions �q��r�. We
also defined !q� � �i� � �a�, where �i� is the KS orbital
energy of state i with spin �. The XC kernel is the func-
tional derivative of the XC potential in TDDFT [5,7], and
we assume the frequency independent ALDA kernel in the
following. The ~� matrix can be split in separate singlet and
triplet ~� matrices [26]. Solving Eq. (3) therefore yields
predictions of both singlet and triplet transition frequencies
!. In order to perform these calculations we have added
subroutines to evaluate the matrix elements needed for a
TDDFT calculation. Since the system studied is small, we
exactly diagonalize the ~� matrix.

In Fig. 4, we show the results obtained from a TDDFT
ALDA calculation, but using the OEP ground-state poten-
tial. Apart from the full results we also show results
obtained with the single-pole approximation (SPA), which
ignores the off-diagonal matrix elements in Eq. (4) [27].
The SPA is analogous to the distorted-wave Born approxi-
mation used in earlier work, which worked well for elec-

tron scattering from He� [17], but fails badly for H. In
Fig. 4 the SPA is indeed a poor approximation to the full
singlet curve, especially at low energies. For the triplets, on
the other hand, we obtain excellent results that are on top of
the reference values.

If we now look at the full calculation we see that
including the off-diagonal matrix elements considerably
improves the singlet values giving results very close to the
reference data. For the triplet the results only change for
smaller energies where the values are too big and there is a
small ‘‘bump’’ close to E � 0. We believe this bump to be
unphysical, due to coupling among transitions being
treated incorrectly by our approximate XC kernel, as E!
0. This suspicion is reinforced by the fact that in this
region, the full ALDA triplet results depend on the position
of the wall, and so cannot be trusted. However, similar
effects were found with other common kernels, such as
exact exchange, so we believe some delicate behavior of
the XC kernel is required to avoid this artifact.

To quantify results for low energies, the scattering length
is defined by the effective range expansion,

 k2l�1 cot�l�k� �
k!0
�

1

al
�

1

2
relk

2 �O�k4�; (5)

where al is the scattering length and rel the effective range.
Since we have no wave function, to extract al we must fit
our data to the above expression to obtain the scattering
lengths. We give a rough estimate of the expected TDDFT
scattering lengths in Table I, by fitting our results for small
k. As a reference, the KS scattering lengths are 4.7 for the
exact potential and 4.2 for the exact exchange potential. We

3.0

2.5

2.0

1.5

1.0

0.5

0.0

s-
w

av
e 

ph
as

e 
sh

ift

0.40.30.20.10.0
Energy [a.u.]

e-H  phase shift

 Accurate data
 KS
 ALDA SPA
 ALDA

FIG. 4. Singlet and triplet TDDFT curves from a SPA and full
ALDA calculation, together with the KS values and accurate
quantum chemical data from Ref. [19]. The ground-state KS
potential is exact exchange. The wall location in all calculations
is at 100 a.u.
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FIG. 3. The s-wave phase shifts for the exact and exact ex-
change KS potentials for H�.
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report the scattering lengths we obtained from our phase
shifts, or in the case of the full triplet ALDA calculation,
from fitting a tangent to the curve, required to pass through
�. In the triplet case, the value obtained from the fit agrees
well with the reference value, as does the SPA result. Thus
either method yields accurate results as k! 0.

Scattering from neutrals is very different from scattering
from positive ions. In the former, the N � 1-electron sys-
tem has a short-ranged potential, and so a finite cross
section, but in the latter, the KS potential is long ranged,
i.e., it decays as �1=r for large r, and the cross section
diverges. The phase shift is then defined relative to pure
Coulomb scattering. Our general approach still applies, but
Eq. (1) must be modified. If a potential deviates from�1=r
only for r < Rc,

 tan���� � �Fl�k�Rc�=Gl�k�Rc�; (6)

where Fl and Gl are the Coulomb scattering solutions [28].
We will report results for positive ions in future
publications.

While the ALDA functional uses only input from the
uniform electron gas, our results show that it gives accurate
results for electron scattering from a system that could not
be further away from a homogeneous gas, the hydrogen
atom. These results encourage us to continue work along
these lines. We will calculate other l values, different
approximate ground-state potentials, different XC kernels,
other atoms, and ions, to gain experience in the reliability
of TDDFT calculations. But we finish by considering some
obstacles in applying our method to scattering from large
molecules. We first note that, by converting the problem to
one of discrete transitions, one needs only modify an
existing electronic structure code by placing a hard wall
around it, rather than use a scattering code. However, our
formula is only exact if the wave function has a node on the
hard-wall surface, which would only be true state-by-state
for a nonspherical system. Much better is to use a large
sphere, so that the formula is approximately true. We must
also address the multichannel case. We intend applying our
method to electron scattering from Be� next, which is a
well-studied scattering example [29], and for which the
exact ground-state KS potential is known [18].
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TABLE I. TDDFT s-wave scattering lengths.

Singlet a Triplet a

Accurate dataa 5.97 1.77
ALDA SPA 9.7 1.8
ALDA 5.6 2.0b

aAccurate variational calculations from [19].
bThis is the value as obtained from our tangent approximation as
explained in the text
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