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We report the experimental observation of rectified momentum transport for a Bose-Einstein conden-
sate kicked at the Talbot time (quantum resonance) by an optical standing wave. Atoms are initially
prepared in a superposition of the 0 and —2%kk; momentum states using an optical 77/2 pulse. By changing
the relative phase of the superposed states, a momentum current in either direction along the standing
wave may be produced. We offer an interpretation based on matter-wave interference, showing that the

observed effect is uniquely quantum.
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The current interest in rectified atomic diffusion, or
atomic ratchets, may be traced back to fundamental ther-
modynamical concerns [1] and also the desire to under-
stand the so-called “Brownian motors” linked to directed
diffusion on a molecular scale [2,3]. Abstractly, the ratchet
effect may be defined as the inducement of directed diffu-
sion in a system subject to unbiased perturbations due to a
broken spatiotemporal symmetry.

Given the scale on which such microscopic ratchets
must work, it is not surprising that the concept of quantum
ratchets has recently augmented this area of investigation.
The addition of quantum effects such as tunneling gives
rise to new ratchet phenomena such as current reversal [4].
Whilst early quantum ratchet investigations, both theoreti-
cal and experimental, have focused on the role of dissipa-
tive fluctuations in driving a ratchet current [5], recent
theory has considered the possibility of Hamiltonian ratch-
ets, where the diffusion arises from Hamiltonian chaos
rather than stochastic fluctuations [6]. This has led to
proposals [7,8] and even an experimental realization [9]
for ratchet systems realized using atom optics, in the con-
text of the atom optics kicked rotor [10] where periodic
pulses from an optical standing wave kick atoms into
different momentum states.

It is generally accepted that a ratchet effect cannot be
produced without breaking the spatiotemporal symmetry
of the kicked rotor system. In Ref. [9], a rocking sine wave
potential was combined with broken time symmetry of the
kicking pulses to effectively realize such a system in an
experiment. Other schemes involve the use of quantum
resonance (QR) to drive the ratchet effect. At QR, atoms
typically exhibit linear momentum growth symmetrical
about the initial mean momentum. However, it has been
suggested that merely breaking the spatial symmetry of the
kicked rotor at QR may be sufficient to produce a ratchet
current [11]. In this Letter we present the first experimental
evidence of such a resonant ratchet effect in which the

0031-9007/07/99(4)/043002(4)

043002-1

PACS numbers: 32.80.Qk, 03.75.—b, 05.45.Mt

underlying mechanism is purely quantum. Our system uses
a Bose-Einstein condensate (BEC) kicked by an optical
standing wave [12], but there is no asymmetry in either the
kicking potential or the period of the kicks (which is set to
the Talbot time T corresponding to quantum resonance
[13]). Rather, the observed directed diffusion is a property
of the initial atomic wave function (which we prepare
before kicking) in the presence of a resonantly pulsed
optical lattice. The experiment cannot be performed with
thermal atoms, as it requires an initial atomic momentum
spread much less than a photon recoil in order to avoid
dephasing effects. Our work presents analytical, simula-
tion, and experimental results for a specific realization of a
ratchet at QR similar to that proposed in [11]. We also offer
a clear physical interpretation in terms of matter-wave
interference.

As shown in Fig. 1, our experiment is comprised of a
BEC which is subjected to pulses from an optical standing
wave. The experimental configuration has been explained
elsewhere [14,15] and thus we provide only a summary
here. A BEC of ~3 X 10° 8’Rb atoms is realized and
loaded onto an atom chip [15]. The atoms are trapped in
the 58/, F = 2, my = 2 state by the magnetic field gen-
erated by the chip and sit 700 wm below the chip surface.
Typically, the axial trapping frequency for the BEC is
w, =27 X 17 Hz and the axial and radial Thomas-
Fermi radii are d, = 17 umand d, = 3 um, respectively.
The BEC is prepared in an initial superposition state using
aBragg 7/2 pulse and then kicked using light from a diode
laser. Figure 1(a) shows the configuration used to control
the intensity and frequency of the two beams used to create
the Bragg and kicking pulses. A free running 100 mW
diode laser, red detuned 4 GHz (i.e., A = 780.233 nm)
from the 8’Rb 5%5, — 5?P;, transition, enters a 50/50
beam splitter and the output beams are passed through
separate acousto-optic modulators (AOMs) to control their
frequency and amplitude after which they intersect with
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FIG. 1 (color online). Diagrams of the experimental setup and
sequence. In (a), the laser configuration used to control Bragg
diffraction and the kicking beam is shown. The beam is split by a
50/50 beam splitter (BS) and the output light passes through
separate acousto-optic modulators (AOM) which control the
beam intensities /, , and frequencies w;,. The atom chip BEC
setup is shown schematically in (b) along with the optical lattice
created by the two intersecting beams. The three different phases
of Bragg diffraction, phase evolution, and kicking are shown in
(c) and are explained further in the text.

the BEC [Fig. 1(b)]. The experimental sequence of laser
pulses is shown in the diagram in Fig. 1(c).

For the Bragg pulse, the intensity of one beam is
dropped to 3% of its maximum power using the amplitude
modulation (AM) mode of one function generator while
the frequency of the counterpropagating beam is increased
by 4w, = 15 kHz (where w, = 2.37 X 10* Hz is the re-
coil frequency of 3’Rb) relative to the other beam. After the
Bragg pulse, a period A, of free evolution is used to adjust
the quantum phase of the | —2#k;) state relative to |07k;),
and the beam intensity and frequencies are made equal for
kicking. The overall pulse envelope and timing were con-
trolled by another pulse generator. The Bragg or kicking
beams have an optical power of about 5 mW. For a /2
pulse, a duration Az of 60 us was used. For the kicking
pulses, a width of T}, = 5 us was used with a pulse period
T equal to the Talbot time T; = /2w, = 66.3 us for
87Rb. Like other groups performing kicked BEC experi-
ments [12], we have found that neither the energy due to
atom-atom interactions nor the harmonic potential affects
our results for the time scales used here, given the rela-
tively much greater energy due to kicking of the atoms. We
simulate the system by calculating the evolution of the
initial wave function subject to the single atom
Hamiltonian 2 (i.e., simulation of the Gross-Pitaevskii
equation is not necessary).

We now provide a theoretical treatment of our system.
First we consider the preparation of the initial state by a

Bragg /2 pulse. We will assume the BEC starts in an
initial 0 momentum eigenstate |0hk;). This is not a bad
approximation, since the atoms in the BEC have a thermal
spread which is much less than 27k;. The 7/2 pulse creates
an equally weighted superposition state |ig) = % X
(I0nk;) — i|2hk;)). After the Bragg pulse has been applied,
a period A 4 of free evolution is allowed. During this time,
the | —27k;) state accumulates a phase ¢ = 4w,A 4, where
¢ = 27 corresponds to A, = Tr. The initial state just
before kicking starts is then

1
V2

The dynamics, due to sharp periodic momentum kicks
applied to this state, are governed by the Hamiltonian [16]

i) = —= (100k;) — ie'?|—2nk,)). (D

A2
v _ P I _
H= > + Kcos(2k,x)Z§(t’ 17), (2

where p and X are the atomic momentum and position
operators, respectively, K = hV,T,/h is the kicking
strength for an optical potential of height V,, ¢ is time, ¢
is the kick counter, and 7 = 47T /T is the scaled kicking
time. The associated Floquet operator for the case of QR
(r =4m) is [17] UQR(I) = expl—iKtcos(2k;%)]. Applied
to |¢;), the output wave function ¢/, and momentum dis-
tribution P(m) are [18]

_m
e~ iam

lpo(m) = W[Jm(Kt) - ei(¢)Jm+1(Kt)]’ (3)

P(m) = Y2(KD) + ., (K1) = 205, (KD) 1 (K1)
“4)

Equations (3) and (4) have a particularly interesting prop-
erty: for general phase ¢, the wave function and thus the
momentum distribution grow asymmetrically with time.
This property is seen in Figs. 2(a) and 2(b) which show
the wave function after 5 kicks for ¢ = 7. The change in
net momentum may be seen to be due to interference
between the diffraction orders of the two initial wave
functions which is mostly destructive below m = —1 but
constructive above this initial mean momentum, leading to
an asymmetric distribution of atoms [Fig. 2(c)]. The dra-
matic nature of this induced asymmetry is demonstrated
even more clearly in [Fig. 2(d)] which shows the theoreti-
cal probability distribution after 100 kicks. We note that
the directed transport of atoms has been caused by the in-
terference of diffracted matter waves, that is, the observed
“ratchet” effect is entirely quantum (indeed, our experi-
ment may be viewed as a type of atom interferometer
[19]). Experimental confirmation is presented in Fig. 3
which shows absorption images of a kicked BEC after
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FIG. 2 (color online). Wave functions and momentum proba-
bility distributions for kicked atoms with K = 0.6. The momen-
tum m is in units of 2fk;. In (a) and (b), respectively, the real and
imaginary parts of atomic wave functions after 5 kicks for ¢ =
ar are shown. The wave function evolving from an initial |O%k;)
state is shown with x’s (simulations) and a dot-dashed line
[theory of Eq. (3)], while that which evolved from an initial
| —2hk;) state is shown with O’s (simulations) and a dotted line
(theory). The lines are merely to guide the eye, and the theo-
retical wave function is only nonzero at multiples of m = 2hk;.
In (c) asymmetry is seen to arise in the final momentum
probability distribution corresponding to ¢ = 7 (dashed
line—theory, squares—simulations) while for ¢ = /2 (solid
line—theory, triangles—simulations) there is symmetry about
m = —hk;. In (d) the same system is shown after 100 kicks
emphasizing the extreme asymmetry of the momentum distribu-
tion.

preparation into state ;. The behavior seen matches that
predicted by Eq. (4). In particular, for ¢ = 0 the atomic
momentum distribution increases in asymmetry towards
negative momentum, whereas for ¢ = 7, the asymme-
try is in the opposite direction. For ¢ = 77/2 the distri-
bution is almost symmetrical (allowing for experimental
fluctuations).

We may also find the momentum current i(r) = (d/dr) X
(p(1)) by calculating the first moment of the momen-
tum distribution (p) =Y, mP(m) =33, [mJ; (K1) +
mJ? . (K1) — 2cos(¢p)mJ,,(K1)J 1 (K1)]. The first two
terms give the momenta of the two superposed initial
states, e.g., 0 and —1 (in 2%k, units), respectively. The
term of interest is Y, mJ,, (K1)J,.(Kt), which may be
summed by applying the standard Bessel recursion formula
and the Neuman sum rule [20] to give K¢/2. Thus

i) = < (plo) = = cos . ®

Equation (5) offers a useful way to summarize the data.
The atomic momentum distribution was reconstructed
from the absorption images shown in Fig. 3 and the
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FIG. 3 (color online). Sequences of absorption images for the
ratchet BEC experiment from ¢ = 0 to t = 7 kicks for (a) ¢ = 0,
(b) ¢ = 7/2, and (c) ¢ = . The t = 0 case shows the initial
distribution after the Bragg /2 pulse. In the top panel of (a), the
0 and —27k momentum states are shown. At the bottom of each
column, a sum over the rows of the image for t = 7 is shown
giving the distribution of atom number N with position. In these
plots, the dashed line marks the position of the mean initial
momentum hk. The images clearly show the presence of a
ratchet current which reverses direction when the phase ¢
crosses 7 = ¢ /2 (for which phase the current is seen to vanish).

mean momentum calculated. To check repeatability we
took another set of data for the same parameters as those
in Fig. 3, for t > 2 (since very little diffusion occurs in the
first two kicks). Average currents for the two data sets are
shown in Fig. 4, along with error bars showing the differ-
ence between the measurements. The extraction of very
small mean momenta ({p) ~ hk;) from the distributions in
Fig. 3 is hampered by experimental imperfections such as
CCD noise and scattered light, and laser frequency drift,
which may lead to occasional changes in experimental
parameters. This is the most likely cause of the large error
bar seen in the case of ¢ = 7 when ¢ = 6. Increasing the
accuracy of the measurements would require a larger atom
number and ideally a separate laser for Bragg diffraction
and kicking. Nonetheless, Fig. 4 clearly demonstrates the
momentum current effect and a current reversal for ¢ = 0
compared with ¢ = 7r. The data show a general linear
trend as predicted by Eq. (5), with fitted lines shown in
both cases. For ¢ = 77/2, although individual momentum
distributions are not perfectly symmetrical, the current is
near 0 on average. The control case for an initial |07k;)
distribution is also shown and seen to exhibit near 0
average momentum current. Note that the dotted and
dashed lines are not fits to the data, since there are no
free parameters in either of these cases. Theoretically, the
momentum current should persist indefinitely. In an ex-
perimental setting, however, imperfections such as the
finite pulse width and any small difference between the
pulse period and the Talbot time will reduce the ratchet
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FIG. 4 (color online). The experimentally measured (p) (in
units of 271k;) is shown along with theoretical curves for various
initial conditions. Experimental data are shown by x (¢ = 0), O
(¢ = w/2), 0 (¢ = ), and + (no initial 77/2 pulse). The solid
and dash-dotted lines are fits to the data for ¢ = 0 and ¢ = r,
respectively. Dashed and dotted lines show (p) = —0.5 and
(p) = 0, respectively (note that these lines are not fits to the
data).

current. Because of a low signal to noise ratio at higher
kick numbers in the current experiment, it was not possible
to probe these effects with our current setup. We note that
the effects seen here require a well-defined quantum phase
between the initial states in superposition. Therefore, the
experiment must be performed using a BEC as a ther-
mal cloud typically has a large spread of initial momenta
(and therefore quantum phase after free evolution), de-
stroying the directed diffusion effect. It may be possible
to exploit any sensitivity of the ratchet current to pulse
timing and phase variations to make accurate interferom-
etry measurements.

In summary, we have demonstrated a novel quantum
ratchet effect, in which directed momentum transport oc-
curs in a system subject to a pulsed potential with no net
bias. The effect has no classical analogue, unlike previous
such systems studied experimentally. The direction of the
ratchet current varied with the initial quantum phase as
predicted, showing complete reversal for ¢¢ = 0 compared
with ¢ = 7. This realization of directed momentum trans-
port suggests new possible mechanisms for directed mo-
tion on any scale where quantum interference effects are
non-negligible and resonant transport exists.

M.S. would like to thank Scott Parkins and Andrew
Daley for discussions regarding this work.

Note added in proof.—After submission of this Letter,
similar experimental results were reported by Dana et al.
[21].
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