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Lowest Excitation Energy of °Be
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Variational calculations employing explicitly correlated Gaussian functions and explicitly including the
nuclear motion [i.e., without assuming the Born-Oppenheimer (BO) approximation] have been performed
to determine the lowest singlet transition energy in the °Be atom. The non-BO wave functions were used
to calculate the a? relativistic corrections (o = 1/137.035999 679). With those corrections and with the
a? and o* QED corrections determined previously by others, we obtained 54 677.35 cm™! for the 3'S —
21§ transition energy. This result falls within the error bracket for the experimental transition of
54677.26(10) cm™!. This is the first time an electronic transition of Be has been calculated from first

principles with the experimental accuracy.
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The theoretical calculations on two- and three-electron
atomic systems using Slater-type or Hylleraas-type explic-
itly correlated functions have achieved a very high level of
precision matching and, in some instances, have exceeded
the precision of the experiment [1-5]. Thus the challenge
in very accurate atomic calculations is now shifted to
achieving a similar level of accuracy in calculations on
atoms with more than three electrons. Though the Slater-
type or Hylleraas-type functions very effectively describe
the most important features of atomic wave functions, in
cases with more than three electrons they lead to difficul-
ties in calculating the Hamiltonian matrix elements, which
have not been resolved. In such a situation there has been a
search for alternative basis functions for atomic calcula-
tions that are efficient in describing atomic states yet easy
to use in practical implementations. One of the bases that
has been tested are explicitly correlated Gaussian functions
(ECGF). The simplicity of the matrix with these types of
functions has motivated their use in atomic and molecular
calculations since they were first introduced to the field by
Boys [6] in the 1960s. However, since Gaussians, in gen-
eral, are less effective than Slaters or Hylleraas-type func-
tions in describing the cusp and long-range behaviors of
the wave function, their use in calculations aiming at a sub-
wave-number precision in determining atomic transition
energies has not been fully successful. For example, the
recent work of Pachucki and Komasa [7] on the lowest
transition energy of the berillum atom showed that, despite
including several thousand Gaussian in the basis set, the
results are still short of the experimental transition by about
0.2 cm™~! [8].

In recent years we have also used various types of
ECGFs in very accurate variational atomic and molecular
calculations performed with an approach where the Born-
Oppenheimer (BO) approximation is not assumed [9-14].
Without the BO approximation, the calculations treat the
motions of the electrons and the nuclei on equal footing.
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Hence, the effect of the finite masses of the nuclei (the
nucleus for an atomic system) is automatically included in
the total energy, and it is not added as a perturbation as is
usually done in precise atomic calculations, including
those of Pachucki and Komasa for Be [7].

There are three differences in the present calculations in
comparison to the standard approach used by others in-
cluding Pachucki and Komasa. First, our approach includes
putting the nuclear motion on equal footing with the elec-
tronic motion (the non-BO approach). Second, we use the
analytical gradient of the energy calculated with respect to
the Gaussian exponential parameters in the variational
optimizations of the wave functions. Third, the non-BO
wave functions are used to calculate the a? relativistic
corrections with the algorithms we have recently devel-
oped [15—19]; thus those corrections explicitly include the
nuclear effects in addition to the electronic effects.

In our view, the significance of this work lies in showing
that, with the above-described new features of the method,
one can achieve in the calculations employing correlated
Gaussians on a four-electron system an accuracy similar to
that achieved before in the calculations for two- and three-
electron atoms using Slater-type or Hylleraas-type explic-
itly correlated functions [1-5]. Thus the frontier of very
accurate atomic calculations can now be extended, and
such quantities as ionization potentials, electron affinities,
and transition energies can be determined with the accu-
racy matching the accuracy of the present day experiment.

Be is a system consisting of five fermions, four elec-
trons, and the nucleus with spin 3/2. Let us start with the
nonrelativistic Hamiltonian for °Be after the motion of the
center-of-mass motion has been separated out. With this
separation, the five-particle problem is reduced to a four-
particle problem described by the internal Hamiltonian,
H;, [9,10]. In our approach we use Cartesian coordinates
to describe the internal states of the system. The origin of
the internal coordinate system is placed at the nucleus
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(called the reference particle). The other particles (elec-
trons) are referred to the reference particle using the
Cartesian position vectors r;. The internal Hamiltonian,
H,,,, for °Be is
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where Q, = +4 is the nuclear charge, O, = 0, = 03 =
Q. = —1 are charges of the electrons, w; = MqM;/(M, +

M;),i =1, ..., 4 are the reduced masses, M, is the mass of
the nucleus (M, = 16424.2037 a.u.),and M; = 1 a.u.,i =
1,...,4 are the electron masses. The separation of the
internal Hamiltonian and the Hamiltonian of the motion
of the center-of-mass is exact. The internal Hamiltonian (1)
describes the motion of four pseudoparticles (pseudoelec-
trons) in the central potential of the charge of the nucleus.
To account for the relativistic effects in °Be, we use the
Dirac-Breit Hamiltonian in the Pauli approximation, which
suffices for light atoms where the velocities of the electrons
are relatively small [20,21]. In this approximation, for
states with the S symmetry (these are the states considered
in this work for °Be) and after the transformation to the
internal  coordinate system, the Dirac-Breit-Pauli

Hamiltonian has the following form [15]:
H™ = Hyyy + Hp + Hog + Hss, ()

nt

where the mass-velocity term
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In the atomic Dirac-Breit-Pauli Hamiltonian, the Darwin
correction describing the interaction of the nucleus (with
charge Q, spin I, and mass M) with an electron has the
following form [22]:

2
272 (= i+ 050,
where g is gyromagnetic ratio (for the °Be nucleus it is
equal to 0.78507). Parameter { is equal to zero for an
integer spin and 1/(41) for a half-integer spin. In this
work we do not consider the electron-nucleus spin-spin
interaction, because it is negligibly small in comparison
with the electron-electron spin-spin interaction.

The Gaussian basis functions used in this work to cal-
culate the 2!S and 3'S states of Be are

¢ = exp[—1'(L; L} ® I;)r], (3)

where ® is the Kronecker product symbol, r is a vector of
the internal Cartesian coordinates of the four pseudopar-
ticles (for *Be ris a 12 X 1 vector), L is lower triangular
matrix of nonlinear variation parameters (for Be L, is a
4 X 4 rank 4 matrix), and /5 is the 3 X 3 identity matrix. To
ensure the proper permutational symmetry of the electrons,
the appropriate symmetry projections are applied to the
basis functions.

The wave functions and the corresponding energies of
the 2'S and 3'S states of °Be have been obtained using the
variational method by minimizing the energy

c'H{L})c
e ISAL D

with respect to both linear expansion coefficients, c;, and
the nonlinear parameters of the basis functions, i.e., the
basis set exponent matrices, L. In the above expression,
H({L,}) and S({L,}) are the Hamiltonian and overlap ma-
trices, respectively. Both depend on the nonlinear parame-
ters of the basis functions. ¢ is a column vector whose
components are c;. The variational calculations for the 21§
and 3'S states have been performed independently and, for
each state, a different Gaussian basis set was generated.
The use of the analytical gradient in optimizing the basis
functions was key in achieving high accuracy and lowering
the computational cost.

The results of the calculations are summarized in
Tables I and II. The results in Table I show how the total
energy of the ground and the first excited singlet state with
the S symmetry (the 2'S and 3! S states) converges with the
number of basis functions. The ground-state results have
been taken from our recent work concerning the calcula-
tions of the ionization potential of “Be [23]. For each state
two sets of results are presented. The first set consists of
finite-mass results corresponding for °Be obtained using
the variational minimization of the total energy with the
nonrelativistic internal Hamiltonian (1). The second set of
results was obtained by setting the mass of the Be nucleus
to infinity. Such calculations are equivalent to calculations

E({Li}Aerd) =
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TABLE I

Nonrelativistic energies, leading relativistic corrections, and the total energies for the ground and the first excited S-state

of the beryllium atom. MV, D, SS, and OO stand for mass-velocity, Darwin, spin-spin, and orbit-orbit corrections, respectively. E.,; =

Eyy + Ep + Egg(e — e) + Egp. All quantities are in hartrees.

SyStem Basis Enom‘el azEMV azED azESS(e‘e) a2E00 azErel Enonrel + azErel
*Be, 21§ 1000 —14.6673548096 —0.0144112159 0.0115607448 0.0005376527 —0.0000474908 —0.0023603092 —14.6697151188
2000 —14.6673562367 —0.0144126724 0.0115626830 0.0005373753 —0.0000474908 —0.0023601049 —14.6697163416
3000 —14.6673563785 —0.0144139017 0.0115639262 0.0005373626 —0.0000474908 —0.0023601038 —14.6697164823
4000 —14.6673564232 —0.0144137733 0.0115638925 0.0005373563 —0.0000474908 —0.0023600154 —14.6697164385
5000 —14.6673564456 —0.0144141634 0.0115642595 0.0005373490 —0.0000474908 —0.0023600458 —14.6697164914
6000 —14.6673564586 —0.0144141401 0.0115642708 0.0005373329 —0.0000474908 —0.0023600272 —14.6697164858
*Be, 3'S 1000 —14.4182343964 —0.0142922824 0.0114792391 0.0005309241 —0.0000479332 —0.0023300524 —14.4205644488
2000 —14.4182394817 —0.0142956970 0.0114836684 0.0005301972 —0.0000479330 —0.0023297643 —14.420569 2460
3000 —14.4182400298 —0.0142968801 0.0114850314 0.0005301016 —0.0000479331 —0.0023296802 —14.4205697100
4000 —14.4182401699 —0.0142983875 0.0114865331 0.0005300663 —0.0000479331 —0.0023297211 —14.4205698910
5000 —14.4182402298 —0.0142988942 0.0114870193 0.0005300563 —0.0000479331 —0.0023297517 —14.4205699815
6000 —14.4182402617 —0.0142989112 0.0114870553 0.0005300289 —0.0000479331 —0.0023297600 —14.4205700217
°Be, 21§ 1000 —14.6664338281 —0.0144076503 0.0115586031 0.0005375630 —0.0000489097 —0.0023603939 —14.6687942220
2000 —14.6664352548 —0.0144091070 0.0115605412 0.0005372856 —0.0000489094 —0.0023601896 —14.6687954444
3000 —14.6664353966 —0.0144103357 0.0115617839 0.0005372730 —0.0000489094 —0.0023601882 —14.6687955848
4000 —14.6664354412 —0.0144102074 0.0115617503 0.0005372666 —0.0000489094 —0.0023600998 —14.6687955410
5000 —14.6664354637 —0.0144105976 0.0115621173 0.0005372594 —0.0000489094 —0.0023601302 —14.6687955939
6000 —14.6664354766 —0.0144105742 0.0115621286 0.0005372433 —0.0000489094 —0.0023601117 —14.6687955883
°Be, 3'S 1000 —14.4173291725 —0.0142887538 0.0114771176 0.0005308359 —0.0000493405 —0.0023301408 —14.4196593133
2000 —14.4173342574 —0.0142921667 0.0114815459 0.0005301090 —0.0000493397 —0.0023298515 —14.419664 1088
3000 —14.4173348053 —0.0142933491 0.0114829083 0.0005300135 —0.0000493397 —0.0023297669 —14.4196645722
4000 —14.4173349453 —0.0142948560 0.0114844097 0.0005299782 —0.0000493396 —0.0023298078 —14.4196647530
5000 —14.4173350051 —0.0142953629 0.0114848960 0.0005299682 —0.0000493396 —0.0023298383 —14.4196648435
6000 —14.4173350370 —0.0142953798 0.0114849320 0.0005299408 —0.0000493396 —0.0023298466 —14.419664 8836

where the Born-Oppenheimer approximation is assumed.
The infinite-mass calculations have been performed with
the basis sets taken from the finite-mass °Be calculations,
and no additional optimization of the nonlinear parameters
was performed. Our previous calculations on atomic sys-
tems have shown that adjusting only linear coefficients of
the basis functions is sufficient to account for the change of
the nuclear mass from a very large finite value (i.e.,
16424.2037 a.u.) to infinity.

The results shown in Table I correspond to basis sets
whose sizes have been increased incrementally by 1000

TABLE II.

functions from 1000 to 6000. Upon examining the en-
ergy convergence, one can see that the ground state con-
verges faster than the first excited state. This can be ex-
pected since the excited-state wave function is more
difficult to describe than the ground-state wave function
due to a radial node.

The infinite-mass energies obtained here can be directly
compared with the recent BO results of Komasa and
Pachucki. Our best result for Be obtained with 6000 basis
functions of —14.667356458 6 a.u. is noticeably lower
than their result of —14.667 355748 a.u. However, the

Nonrelativistic energies (Eponre) finite nuclear mass corrections (Epy), relativistic (a?E,;) corrections, QED corrections

(a3E8])ED and a4E81)3D), and the total energies (Eiy) for the 2! S* and 3! S states of Be in comparison with the experiment. All energies

in hartrees and transition energies in cm™!.

Quantity 2188 3ls? AE* 21s° 3180 AE®

Enonrel —14.666435477 —14.417335037  54671.2272(50)  —14.667355748 —14.418236555 54675.34(22)
Epy n/a n/a n/a 0.000920998 0.000905 240 —3.459(0)
a’E,y —0.002360112  —0.002329847 6.6424(200)  —0.002360312  —0.002331034 6.43(16)
CEGp 0.000339785 0.000337 520 —0.497(1)
a*Eghp 0.000015435 0.000015330 —0.023(6)
Ew® —14.668440368 —14.419312034  54677.3494(320) —14.668439842 —14.419309499  54677.78(45)
Experimentd 54677.26(10)

“This work, computed with 6000 basis functions.
*Pachucki and Komasa [7] and private communication.

ZWe included @ and a* QED corrections from Pachucki and Komasa.

[8].
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TABLE III. Convergence of the 3'S — 21§ transition energy
for Be atom. The results include 3 and a* QED corrections
from Pachucki and Komasa.

Basis AE (cm™)
1000 54 678.2721
2000 54677.4879
3000 54677.4170
4000 54677.3677
5000 54 677.3595
6000 54 677.3494

highest improvement was obtained for the first ex-
cited states where our infinite-mass energy is
—14.4182402617 a.u.  while their energy was
—14.418236 555 a.u..

In Table I we also show the relativistic energy correc-
tions in the order of @? calculated in this work and their
sum multiplied by a? (the entry a®E,; in the last column in
the table). As one can see, the convergence of a’E,, is
quite good, however not as good as for the total non-
relativistic energy. Our total a” relativistic corrections
for the two states calculated with the 6000-term wave func-
tions of —0.002360112 a.u. and —0.002 329 847 a.u., re-
spectively, can be compared with the a? corrections of
—0.002360312 a.u. and —0.002331034 a.u. obtained
with the BO wave functions by Pachucki and Komasa
[7]. The values are very similar.

In Table III we present the calculation of the 3'S — 21§
transition and a comparison with the results of Pachucki
and Komasa [7]. Our final value of the transition energy of
54677.3494 cm™! was obtained by subtracting our non-
relativistic 2!S and 3'S energies obtained with 6000 basis
functions, adding the difference between a? relativistic
corrections of the two states also obtained with the 6000-
term wave functions, and adding the o’ and a* QED
corrections calculated by Pachucki and Komasa [7] to the
result. Our result differs from the result of 54 677.78 cm™!
obtained by Pachucki and Komasa [7] by more than
0.4 cm™!. The difference is significant and can be mostly
attributed to our nonrelativistic energies of the two states
being much better converged than their energies. There is
also a smaller contribution to this difference from the
improved calculation of the relativistic corrections.

Pachucki and Komasa [7] used the experimental mP —
nS transitions obtained by Johansson [8] to estimate the
3§ — 21§ transition. This estimation gave them a value of
54677.26(10) cm™'. Our result matches this value within
the experimental error.

It is interesting to examine the convergence of the
transition energy value with the number of the basis func-
tions as shown in Table III. As one can see, the conver-
gence is very good, and the agreement between the
calculations and the experiment improves when more func-
tions are added to the basis set. However, at least 6000 func-

tions are needed for the calculations and the experiment to
agree within the experimental accuracy. This is the first
time such an agreement has been obtained for an electronic
transition of the Be atom. However, the calculations also
show that a considerable computational effort is required to
achieve such a result.
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