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We construct N = 1 supersymmetric (SUSY) field theory in 4 + 2 dimensions compatible with the
theoretical framework of two-time (2T) physics and its gauge symmetries. The fields are arranged into
4 + 2 dimensional chiral and vector supermultiplets, and their interactions are uniquely fixed by SUSY
and 2T physics gauge symmetries. In a particular gauge the 4 + 2 theory reduces to ordinary super-
symmetric field theory in 3 + 1 dimensions without any Kaluza-Klein remnants, but with some additional
constraints in 3 + 1 dimensions of interesting phenomenological relevance. This construction is another
significant step in the development of 2T physics as a structure that stands above 1T physics.
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According to two-time physics (2T physics), there is
more to space-time than what can be garnered with the
ordinary formulation of physics (1T physics). The two
timelike dimensions in 2T physics are very different than
the naive notion of just adding an extra time dimension as
one adds space dimensions in the Kaluza-Klein sense.
There are gauge symmetries that effectively reduce 2T
physics to 1T physics without any Kaluza-Klein remnants.
However, the reduction is not unique from the point of
view of 1T physics, and this is what is nontrivial and rich in
space-time and physics content.

To help grasp the relation between 1T physics and 2T
physics, consider the many possible shadows of a three-
dimensional object projected from different perspectives
on the surrounding walls of a three-dimensional room. Just
like a flatlander, that can crawl and measure only on the
surface of the wall, would think that the shadows of differ-
ent shapes are different “beasts’” and move differently, so
does 1T physics present different dynamical systems in
terms of different Hamiltonians, although according to 2T
physics there is a unique dynamical system in 4 + 2 di-
mensions that generates all of the 1-time ‘“‘shadows.”

Indeed, evidence has been accumulating that 1T physics
is insufficient to describe certain aspects of our world, just
like shadows on walls alone are insufficient to capture the
true essence of an object in a three-dimensional room. In
particular, 2T physics has revealed that the physical world
in 3 + 1 dimensions is like a holographic shadow of a
highly symmetric universe in 4 space and 2 time dimen-
sions, in which only certain symmetric motions are per-
mitted by a special symplectic gauge symmetry that acts in
phase space. The permitted motions in 4 + 2 dimensional
phase space are completely compatible with the way phys-
ics is perceived in 3 + 1 dimensions. In particular, there are
no problems with causality or unitarity because the extra
1 + 1 spacetime (chosen in inequivalent ways from the
point of view of 1T physics) is removable by the gauge
symmetry.

Recently, a field theoretic description of 2T physics has
been established and applied to the standard model (SM) of
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particles and forces [1]. The gauge symmetries of 2T
physics can be gauge fixed such that spacetime and field
gauge degrees of freedom are thinned out as one comes
down from 4 + 2 to 3 + 1 dimensions holographically
without any remnants of Kaluza-Klein modes. Among
the successes of this approach is the resolution of the strong
CP problem of QCD due to the stronger constraints of the
4 + 2 spacetime, and without an elusive axion. A program
for studying the duals of the SM, as the other shadows of
the same 4 + 2 theory, has also been initiated.

In this Letter we will outline the formulation of the
general supersymmetric version of 2T physics field theory
in 4 + 2 dimensions, for fields of spins 0, %, 1,withN =1
supersymmetry (SUSY). This will be a starting point for
physical applications in the form of the supersymmetric
version of the SM in 4 + 2 dimensions, as well as for gen-
eralizations to higher N = 2, 4, 8 supersymmetric 2T phys-
ics field theory, which will be presented in future papers.

In what follows, we use mostly left-handed spinors, but
also find it convenient at times to use right-handed spinors
as the charge conjugates of left-handed ones. The left-
handed spinor ¢;,(X), in the 4 representation of
SO(4,2) = SU(2, 2), is labeled with & = 1,2, 3,4, while
the right-handed spinor g, (X), in the 4 representation of
SU(2, 2) is labeled with & = 1,2, 3, 4. One may also con-
struct an 8-component spinor of SO(4, 2) with a Majorana
condition such that ¢; together with ¢ make up the 8
components of ¢ = (i;), and because of the Majorana

condition, ¥ and ¢; are related to each other. One could
rewrite all right-handed spinors as left-handed ones by
charge conjugation which is given by

pr=Cyl = CnT(y)* or ¢ =—(p)'C. (1)

Using these definitions we can also write the following
equivalent relations

Y = —Ci¢k or = (4)"C. (2
Our SO(4, 2) = SU(2, 2) gamma matrices I'™, T'" are 4 X

4 matrices in the 4,4 Weyl spinor bases, and are given
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explicitly in footnote (9) of [1]. The antisymmetric charge
conjugation matrix is C = 7y X 0,. The symmetric
SU(2,2) metric n = —i7; X 1 is used to construct the
contravariant i = ()T m)P = (}) 4P

There is no space here to explain the origin of the 2T
physics gauge symmetries in field theory that are given in
[1,2], but it should be mentioned that it comes from de-
manding a local Sp(2, R) symmetry in phase space
(XM(7), Pyy(7)) in the worldline description of particles.
This local symmetry makes position and momentum in-
distinguishable at every instant, and requires that the physi-
cal space is the subset of phase space that is Sp(2, R) gauge
invariant. We emphasize the basic important fact that the
equations of motion that follow from the Lagrangian below
impose Sp(2, R) gauge singlet conditions X?> = XP =
P? = 0 in phase space [or OSp(n|2) gauge singlet condi-
tions for a field with spin /2], but now including inter-
actions [1].

The Sp(2, R) [or OSp(n|2)] mentioned above leads to a
corresponding gauge symmetry in the field theoretic for-
mulation of 2T physics as discussed in [1]. To satisfy the
gauge symmetries of 2T physics, each one of the spin 0, %,
1 fields and their interactions can occur only in the form of
the Lagrangian terms given below. One should note that the
spacetime structures for kinetic terms, Yukawa couplings,
volume element, etc., are different than usual field theory
in 4 + 2 dimensions. The distinctive spacetime features in
4 + 2 dimensions include the delta function 8(X?) and its
derivative '(X?) that impose X> = XMX,, = 0, the kinetic
terms of fermions that include the factors XD, XD, and
Yukawa couplings that include the factors X or X, where

X =TYXx,,, D=T"D,,, etc. A left arrow on BM means

that the derivative acts on the field on its left ¢, D), =
Dyyr.

The appearance of explicit factors of X imply that the
action below is not invariant under translations of XM.
However, it is invariant under SO(4, 2) rotations of XM.
This is the right structure for the theory to have Lorentz
symmetry SO(3, 1) and translation symmetry in the 3 + 1
emergent spacetime x* after the gauge fixing of the 2T
gauge symmetries. Indeed, if we choose the special gauge
mentioned at the beginning of the Letter, the emergent
spacetime x* is Minkowski space, and in this space
SO(4, 2) rotations of XM act as the conformal transforma-
tions of x* that includes Poincaré symmetry in 3 + 1
dimensions.

On the structure demanded by 2T physics described
above, we now impose SUSY. The fields are then organized
into chiral supermultiplets (¢, 7, F); and vector super-
multiplets (A, Az, B)* in 4 + 2 dimensions. These carry
indices a for the adjoint representation of a Yang-Mills
gauge group G, and indices i for a collection of represen-
tations of the same group. Therefore, all derivatives will
appear as Yang-Mills gauge covariant derivatives Dy,

which take the appropriate form depending on the repre-
sentation of the group G.

It turns out that the general theory of N =1 chiral
multiplets coupled to N =1 vector multiplets takes the
following form:

L= Lchiral + Lvector + Lint + Ldilaton- (3)

The vector multiplet (A, Az, B)® with its self-interactions
is described by

1 [
Lvector = 5(X2) _ZFIL(/INFQ/[N + E[AZXD/\aL
g 1
+ DX Ay ]+ EB“BH}. 4)

The chiral multiplet (¢, ;, F); with its self-interactions is
described by

, i -
L chiral = 5(X2){_DM€0”LDM€DI‘ + §(¢2XD¢1'L

+ ¢ DX ) + FUF,

ow i _ 2w
+ | —F;, —=;; (CX); + H.c.
[3%‘ ' 2%1‘( )%L 3@53%} C}

+28' (X ;. (5)
Some of the interactions of the chiral multiplet with the
gauge multiplet already appear through the gauge cova-
riant derivatives DM @; and D™ s;; . Additional interactions

of the vector and chiral multiplets occur also through the
auxiliary and gaugino fields B¢ and A{

Li = (X aet(t,))0;B7 + BeTi(t,)] ;)T (CX)AY}
+ He., (6)

where «a, 8 will be uniquely determined by SUSY. Finally,
a sketchy description of the dilaton is given by

—16(X%) 0y @M D + §'(X?)D?
+ superpartners of ® + §(X?){&,B®?
+ V(D, ¢)}. (7

L dilaton —

We note the following points on the structure of the
Lagrangian.

(1) The W(@) in Ly is the holomorphic superpotential
consisting of any combination of G-invariant cubic poly-
nomials constructed from the ¢; (and excludes the ¢'t)

W(p) =y o004,

- : . ®)
y'/¥ = constants compatible with G symmetry.

The purely cubic form of W(¢) leads to a purely quartic
potential energy for the scalars after the auxiliary fields F;
and B? are eliminated through their equations of motion. A
purely quartic potential is required by the 2T gauge sym-
metry even without SUSY.
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(2) The X in the Yukawa couplings ()7 X
(CX);(0°W/dp,0¢;) or Blet 194 )T (CX) A,y is consis-
tent with the SU(2, 2) = SO(4, 2) group theory property
(4 X 4)4pisymm = 6: mamely, two left-handed fermions
must be coupled to the vector XM to give an SO(4, 2)
invariant. The X insertion is also required for the 2T gauge
invariance [1].

(3) SUSY requires that the dimensionless constants «, 8
are all determined in terms of the gauge coupling constants
g for each subgroup in G as follows (There is a separate
gauge coupling g for each subgroup in G, so there are
separate «, (3 for each g.)

a=g B=+2g 9)

The only parameters that are not fixed by the symmetries
are the Yang-Mills coupling constants g and the Yukawa
couplings y“/* which are restricted by G invariance

ow

af(taso)i =0. (10)
[}

(4) Now we turn to the dilaton term L g0 AS men-
tioned above, the superpotential W(¢) is restricted by
supersymmetry to be purely cubic in ¢. So for driving
the spontaneous breakdown of the G symmetry the same
way as in the nonsupersymmetric case (as in [1]), as well as
for inducing soft supersymmetry breaking through the
Fayet-Illiopoulos type of term &,®?B¢, it would be desir-
able to couple the dilaton ® to the chiral and vector
multiplets by having interactions of the form V(®, ¢)
and &, # 0 for U(1) gauge subgroups. However, we have
not yet included the superpartners of the dilaton because
this is still under development in the 2T physics context, so
we are not yet in a position to discuss the SUSY constraints
on the desired couplings. Therefore, in this Letter we will
not be able to comment in detail on the dilaton-driven
electroweak or SUSY phase transition. However, we point
out that in agreement with [1] this is again a consistent
message from 2T physics, namely, that the physics of the
SM, in particular, the electroweak phase transition that
generates mass, is not decoupled from the physics of the
gravitational interactions in a complete unified theory of all
the forces. The full theory may be attained by further
pursuing these hints provided by the 2T physics formula-
tion of the standard model.

We now summarize the properties of the SUSY trans-
formations for the chiral and vector multiplets that leave
invariant the action § = [ d°xL. The dilaton and its super-
partners are ignored here. The supersymmetry transforma-
tion for the chiral multiplet is [in the following g5 = C&l
and &g = (g,)7C, and similarly for Ay or ¢z, as in Egs. (1)
and (2)]

8o = ExXihyy + X2|:_%‘§RD_¢iL + % %&QSL
S+ R (e | (1

8.F; = &.[XD — (XD + )1y — iv28(8. XA (1, 0);,
(12)
8sthi, = i(Dy )TV eg) — iF;e,, (13)
8.0 = iggI™M(Dy o)t + ig F1. (14)

The supersymmetry transformation for the vector multiplet
is

1 - 1
68A1au = {_EELFMX/\?‘ + X2|:2—\/§ Z-_:LFMN(DN)\%)

Sl + e, (15)

i

§,B =
V2

§.[XD — (XD + 2)]A¢ + H.c,, (16)

1 1
S0, = i——=F4y[TMNg,) ——Big, 17)

242 V2
Syt = ii(éLrMN)Fa —iéLB. (18)
L 2\/'2' MN \/i

These SUSY transformations have some parallels to naive
SUSY transformations that one may attempt to write down
as a direct generalization from 3 + 1 to 4 + 2 dimensions.
However, there are many features that are completely
different. These include the insertions that involve X =
XMT,, or X = XMT,,, the terms proportional to X2, and
the terms proportional to derivative terms involving (XD +
2). These are off shell SUSY transformations that include
interactions and leave invariant the off shell action. The
free field limit of our transformations (i.e., W = O and g =
0) taken on shell [i.e., terms proportional to X? and (XD +
2) set to zero] agrees with previous work which was
considered for on shell free fields without an action prin-
ciple [3].

Despite all of the changes compared to naive SUSY, this
SUSY symmetry provides a representation of the super-
group SU(2, 2|1). This is signaled by the fact that all terms
are covariant under the bosonic subgroup SU(2, 2), while
the complex fermionic parameter g; and its conjugate &;,
are in the 4, 4* representations of SU(2, 2), as expected for
SU(2, 2[1).

The closure of these SUSY transformations is discussed
in the detailed paper [4] in the case of the pure chiral
multiplet (i.e., gauge coupling g = 0). The commutator
of two SUSY transformations closes to the bosonic part
SU(2,2) X U(1) C SU(2, 2|1) when the fields are on shell.
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More generally, when the fields are off shell the closure
includes also a U(1) outside of SU(2, 2|1) and a 2T physics
gauge transformation, both of which are also gauge sym-
metries of the action.

When reduced to 3 + 1 dimensions by choosing the
special gauge mentioned earlier, the SU(2,2|1) transfor-
mations give a nonlinear off shell realization of super-
conformal symmetry in 3 + 1 dimensions.

The Lagrangian in Eq. (3) transforms into a total diver-
gence under the SUSY transformations (in the absence of
the dilaton). Applying Noether’s theorem we compute the
conserved SUSY current. The details are shown step-by-
step in an upcoming publication [4]. The result is

= 3(x2){DK(xN¢“)(F’<NFM — MNTK) g,

oW 1

* 2 XyTMN ety + ﬁF;QLXN(F’“’V M
_ i . -
— "MK A, — \% Soh(fa ¢)iXNFMN/\Ra}- (19)

The first line comes from L ;.,;, the second from L qors
and the third from L;,. The charge conjugate of J¥ is the
left-handed counterpart of the above J¥ = —C(J¥)T.

To show that this current is conserved we use the equa-
tions of motion that follow from the full Lagrangian. All of
the following equations, and their Hermitian conjugates,
should be multiplied by §(X?), so they are required to be
satisfied only at X> = 0:

(XD +1)¢;= (XD +2)F;=(XD +2)B* = X" F4,, =0,

(20)

(XD + 2)y, = (XD + 2)A% = 0, 1)
D2t + i F —igz CXy W
L P P A A A P P

+ g(@TB) + V2g( 1) XA% = 0, (22)

_ oN
(Dy FMNYs — ifabe X, TMN AL Xy — ig@Tt'D ¢
+ g Xy TNy =0, (23)

_ _ X% _
XDy + iXipy; —2g(ot1,X29) =0, (24)
dp;dp;
. owt
B + goti(t,p); = 0, Fi+—=0,
8o (t,0); it ot 25

iXDA% + 2goti(t, Xy, ), = 0.

The first two equations impose homogeneity conditions on
the fields, while the others control the dynamics. Using
these, and the following crucial Fierz identities in 4 + 2
dimensions,

PwW

0=06(X")——7—
dp;0p;0p;

(riXipr)(ErXpr)), (26)

0 = 8(X?) fape(EL[Tyr, XIAL)(AZ[TM, X]A5), (27

we can verify with some algebra that this SUSY current is
conserved:

Besides the direct proof of the invariance of the action
given in the detailed paper, the conservation of the current
amounts also to a proof of SUSY for the theory of Eq. (3)
that supplies the equations of motion.

In a longer paper [4] we will supply the details of this
theory and the proof of supersymmetry in 4 + 2 dimen-
sions. This construction represents another significant step
in the development of 2T physics as a structure that stands
above 1T physics.

The emergent 3 + 1 SUSY field theory in the flat space-
time gauge [1] is in most respects similar to standard SUSY
field theory. However, there are some interesting additional
constraints from the 4 + 2 structure which would not be
present in the general 3 + 1 SUSY theory. These may be
considered part of the predictions of 2T physics. One of
these is the banishing of the troublesome renormalizable
CP violating terms of the type 6&,,,, Tr(F**FA?) as
described in [1], and continues to be true also in the super-
symmetric case.

Recalling also that the superpotential cannot have any
dimensionful parameters, we see that phase transitions like
supersymmetry breaking and electroweak breaking need to
be driven by the dilaton vacuum expectation value. Hence,
according to 2T physics such phase transitions must be
intimately related to the physics of the supergravity mul-
tiplet. We plan to study the phenomenological consequen-
ces which could be of great interest for phenomenological
SUSY predictions at the Large Hadron Collider.

Ultimately, the main impact of the 2T physics point of
view is likely to be through the dualities of the emergent 1T
physics systems. The methods for performing this research
are discussed in [5].

We gratefully acknowledge discussions with S.-H.
Chen, B. Orcal, and G. Quelin. This work was partially
supported by the U.S. Department of Energy, Grant
No. DE-FG03-84ER40168.

[1] I Bars, Phys. Rev. D 74, 085019 (2006); For a summary,
see arXiv:hep-th/0610187.

[2] I Bars and Y.-C. Kuo, Phys. Rev. D 74, 085020 (2006).

[3] S. Ferrara, Nucl. Phys. B77, 73 (1974).

[4] I. Bars and Y.-C. Kuo, arXiv:hep-th/0703002.

[5] L. Bars, arXiv:0705.2834v1 [Phys. Rev. D (to be pub-
lished)].

041801-4



