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Systems with long-range interactions display a short-time relaxation towards quasistationary states
whose lifetime increases with system size. With reference to the Hamiltonian mean field model, we here
show that a maximum entropy principle, based on Lynden-Bell’s pioneering idea of ‘‘violent relaxation,’’
predicts the presence of out-of-equilibrium phase transitions separating the relaxation towards homoge-
neous (zero magnetization) or inhomogeneous (nonzero magnetization) quasistationary states. When
varying the initial condition within a family of ‘‘water bags’’ with different initial magnetization and
energy, first- and second-order phase transition lines are found that merge at an out-of-equilibrium
tricritical point. Metastability is theoretically predicted and numerically checked around the first-order
phase transition line.
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The emergence of phase transitions in thermal equilib-
rium is a well-understood and widely studied phenomenon.
For short-range interactions, phase transitions have been
explained in the context of equilibrium statistical mechan-
ics. Analytically, they are signalled by the appearance of
singularities in the thermodynamic potentials at specific
points (or regions) of the control parameter space (tem-
perature, energy, external magnetic field, etc.). The situ-
ation becomes more intricate when one considers systems
with long-range interactions [1]. In this case, the property
of additivity, which is used when deriving the canonical
ensemble from the microcanonical, is no more valid.
Because of this intrinsic difficulty, it has been only in the
past decade that phase transitions have been analyzed with
reference to models with long-range interactions, revealing
a rich variety of interesting situations [2]. For instance, the
inequivalence of microcanonical and canonical ensembles
requires a separate analysis of the phase diagram in the two
ensembles. Phase transitions of first and second order are
found, with related tricritical points, but their location in
the control parameters space is not the same in the two
ensembles [3]. This also justifies why one can find negative
specific heat in the microcanonical ensemble [4].

Moreover, focusing on dynamical aspects, remarkable
out-of-equilibrium features are displayed for long-range
systems. It is, for instance, well known that such systems
get trapped in long-lasting quasistationary states (QSSs)
[5], before relaxing to thermal equilibrium. The existence
of QSSs was recognized in a cosmological setting (see [6]
and references therein) and subsequently rediscovered in
other contexts, e.g., plasma-wave interactions [7]. Impor-
tantly, when performing the limit N ! 1 (where N is the
number of particles) before the infinite time limit, the sys-
tem remains permanently confined in QSSs. Consequently,
QSSs represent the sole experimentally accessible dynami-
cal regimes for systems composed by a large number of

particles subject to long-range couplings. This includes
physical systems of paramount importance, ranging from
free electron lasers [8] to ion and particle beams [9]. The
emergence of QSSs has originated an intense debate on the
foundation of statistical mechanics [1]: Surprisingly, the
QSSs keep memory of the initial condition, and, conse-
quently, they cannot be interpreted by resorting to tradi-
tional Boltzmann-Gibbs treatments. In a recent series of
papers [8,10,11], an approximate analytical theory based
on the Vlasov equation and inspired by the pioneering
work of Lynden-Bell [4] has been elaborated. This is a
fully predictive approach that enables one to explain the
appearance of QSSs from first principles.

In this Letter, we shall take one step forward and dem-
onstrate, both analytically and numerically, that out-of-
equilibrium phase transitions occur in the QSSs, separating
qualitatively different dynamical regimes. The analysis is
carried out for the Hamiltonian mean field (HMF) model
[12], which describes the motion ofN coupled rotators. We
determine the out-of-equilibrium phase diagram for a fam-
ily of initial ‘‘water-bag’’ distributions, displaying first-
and second-order transition lines between homogeneous
(zero magnetization) and inhomogeneous (nonzero mag-
netization) QSSs, that merge together at a tricritical point.
The metastability region near the first-order phase transi-
tion line is also studied. A similar analysis, using different
control parameters, has been previously reported by
Chavanis in Ref. [10].

The HMF model has the following Hamiltonian:

 H �
1

2

XN
j�1

p2
j �

1

2N

XN
i;j�1

�1� cos��j � �i��; (1)

where �j represents the orientation of the jth rotator and pj
stands for the conjugated momentum. To monitor the
evolution of the system, it is customary to introduce the
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magnetization, an order parameter defined as M � jMj �
j
P

mij=N, where mi � �cos�i; sin�i� is the magnetization
vector. The HMF model shares many similarities with
gravitational and charged sheet models [6,7] and has
been extensively studied [13] as a paradigmatic represen-
tative of the broad class of systems with long-range inter-
actions. Equilibrium statistical mechanics calculations [12]
reveal the existence of a second-order phase transition at
the critical energy density Uc � 3=4: Below this threshold
value, the Boltzmann-Gibbs equilibrium state is mag-
netized.

As previously reported [5,12], starting from some out-
of-equilibrium initial conditions, for energies below Uc,
the system gets trapped in QSSs, whose lifetime diverges
when increasing the number N of rotators. In this re-
gime, the magnetization is lower than predicted by the
Boltzmann-Gibbs equilibrium and the system displays
non-Gaussian velocity distributions [10,14,15].

In the limit of N ! 1, the system is described by the
following Vlasov equation:

 

@f
@t
� p

@f
@�
� �Mx�f� sin��My�f� cos��

@f
@p
� 0; (2)

where f��; p; t� is the one-body microscopic distribu-
tion function, Mx�f� �

R
f cos�d�dp, and My�f� �R

f sin�d�dp. Hereafter, invoking rotational symmetry,
we shall assume My � 0 and denote Mx as M. With
reference to cosmological applications, Lynden-Bell [4]
proposed an analytical approach to describe the stationary
solutions of the Vlasov equation. He considered the coarse-
grained distribution function �f over a finite grid and asso-
ciated an entropy s� �f� to such a distribution. The statistical
equilibrium obtained by maximizing such entropy, while
imposing the conservation of Vlasov dynamical invariants,
would determine the initial ‘‘violent’’ relaxation. This idea
was later applied to the two-dimensional Euler equation
[16].

Consider now a family of water-bag initial distributions,
which take a constant value f0 inside the phase-space
domain D specified by

 D � f��; p� 2 ���;�� � ��1;1�jj�j< ��; jpj<�pg;

(3)

where 0 	 �� 	 � and �p 
 0. The normalization con-
dition fixes f0 � 1=�4���p�. Hence, the initial magneti-
zation M0 and the energy density U can be expressed as
functions of �� and �p

 M0 �
sin����

��
; U �

��p�2

6
�

1� �M0�
2

2
;

which, in turn, implies that the initial water-bag profiles are
uniquely determined byM0 andU, which take values in the
ranges 0 	 M0 	 1 and U 
 �1�M2

0�=2. With reference
to this specific case, the Lynden-Bell entropy constructed
from the coarse-grained function �f reads

 s� �f���
Z
dpd�

� �f
f0

ln
�f
f0
�

�
1�

�f
f0

�
ln
�
1�

�f
f0

��
: (4)

Requiring that this entropy is stationary, we obtain the
following distribution [10]:

 

�f QSS��; p� �
f0

e��p
2=2�M� �fQSS� cos����p�� � 1

; (5)

where�, �, and� are Lagrange multipliers associated with
the conservation of energy, momentum, and mass, respec-
tively. The magnetization in the QSS MQSS � M� �fQSS�

and the values of the multipliers are obtained by solving
the self-consistent equations which follow by imposing
the conservation laws mentioned above. Since we look
for solutions where the total momentum is zero, the
Lagrange multiplier � vanishes. It should also be empha-
sized that multiple local maxima of the entropy are, in
principle, present when solving the variational problem.

Let us introduce the control parameter plane �M0; U�
(these are indeed the analogues of thermodynamic fields in
equilibrium). In Fig. 1, we plot the transition line that
divides the region of the plane where the global maximum
of Lynden-Bell entropy has MQSS � 0 (homogeneous
state), where �fQSS��; p� does not depend on �, from that
where the maximum is for MQSS > 0 (inhomogeneous
state). This means that, e.g., when fixing the initial mag-
netization M0 and decreasing the energy density U, the
system undergoes an out-of-equilibrium phase transition
from a homogeneous to an inhomogeneous state. Along the
transition line, two distinct regions can be isolated: The
dashed line corresponds to a second-order phase transition;
the solid line refers to a first-order phase transition. First
and second transition lines merge together at a tricritical
point, approximately located at �M0; U� � �0:17; 0:61�.
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FIG. 1 (color online). Theoretical phase diagram on the con-
trol parameter plane �M0; U�: second-order phase transition line
(dashed line); first-order phase transition line (solid line); tricrit-
ical point (solid dot). Inset: Magnification of the first-order phase
transition region and limits of the metastability region (dashed-
dotted line).
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Tricritical points are a well-known feature for systems at
equilibrium and are here shown to occur also out of
equilibrium.

Two important remarks are mandatory at this point.
First, contrary to the usual equilibrium treatment, we
here describe the behavior of the system at short times,
when it attains a QSS. For equilibrium phase transitions,
one instead looks at the behavior of the system at long
times, when the magnetization corresponds to a global
maximum of the Boltzmann entropy (rather than Lynden-
Bell’s entropy). Second, while U is a standard control
parameter, used also for equilibrium phase transitions,
the initial magnetization M0 does not appear in the stan-
dard treatment of equilibrium phase transitions. Indeed,
when using the Boltzmann entropy, the HMF model under-
goes a second-order phase transition at Uc � 3=4, inde-
pendently of M0. Let us notice that this transition energy
value appears in Fig. 1 for M0 � 1. The lower edge of the
metastability region, plotted in the inset, converges to U �
7=12 for M0 ! 0, a value found in Ref. [15] to correspond
to the destabilization of the homogeneous (zero magneti-
zation) state in the Vlasov equation.

To assess the correctness of the above theoretical pic-
ture, we have performed numerical simulations of the
HMF model (1) for finite N. To extrapolate the relevant
behavior occurring in the limit N ! 1, where the Vlasov
description applies, we have varied N from N � 103 to
N � 106. We have chosen two values of M0, one in the
first-order phase transition region (M0 � 0:05) and the
other in the second-order region (M0 � 0:3). For these
two values, we plot in Fig. 2 MQSS versus U for increasing
values of N. The magnetization in the QSS is determined
by averaging over time (20< t 	 100). Points and error
bars in Fig. 2 represent averages and standard deviations,
respectively, over several different initial conditions. The
result of the theoretical analysis (solid curve) is in reason-
able agreement with the simulations, and the agreement
improves, as expected, whenN is increased. It must also be
stressed that the predictions of the theory have no adjust-
able fitting parameter. This confirms the adequacy of
Lynden-Bell’s theoretical framework. The discrepancies
detected near transition energies are discussed in
Ref. [11] and shown to correspond to regions where
Lynden-Bell’s entropy is substantially flat, which implies
the existence of an extended basin of states where the
system can possibly be trapped.

To clarify the behavior of MQSS in the first-order phase
transition region, we consider the energy value U � 0:6
and solve the self-consistent equations for different initial
magnetization values M0. Results are displayed in Fig. 3,
whereMQSS is plotted as a function ofM0. An inspection of
this figure suggests to identify three regions, delimited by
different values of the control parameter M0. For M0 &

0:083 (region I), only one solution of the self-consistent
equations is found which corresponds to an entropy maxi-
mum and is associated with a homogeneous QSS (MQSS �

0). For M0 * 0:089 (region III), two solutions are instead
detected: The one with MQSS > 0 is stable, while that with
MQSS � 0 is unstable. Finally, for 0:083 & M0 & 0:089
(region II), three solutions are obtained: Two of them
(respectively with M1

QSS � 0 and M3
QSS � 0) are local

maxima of the entropy and thus are thermodynamically

0.57 0.58 0.59 0.6 0.61 0.62
U

0

0.1

0.2

0.3

0.4

0.5

M
Q

SS

   N=10
3

   N=10
4

   N=10
6

   Theory

a)

0.56 0.57 0.58 0.59 0.6 0.61 0.62
U

0

0.1

0.2

0.3

0.4

0.5

M
Q

SS

   N=10
3

   N=10
4

   N=10
6

   Theory

b)

FIG. 2 (color online). MQSS as a function of U for
(a) M0 � 0:05 (first-order phase transition) and (b) M0 � 0:30
(second-order phase transition). The number of initial realiza-
tions is 105 (N � 103), 104 (N � 104), and 102 (N � 106), and
the averaging time 20< t 	 100.
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FIG. 3. MQSS as a function of M0 for U � 0:6.
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stable. The third one (M2
QSS, with M1

QSS <M2
QSS <M3

QSS)
is a local minimum and hence is unstable. The expected
equilibrium state is consequently determined by evaluating
the coarse-grained entropy in correspondence to the former
two stationary points and deducing the actual global maxi-
mum. Aiming at fully resolving the magnetization curve
forU � 0:6, one has to perform this additional test for each
selected value of M0: A direct calculation enables one to
track the profile outlined in Fig. 3 with a thick solid line.

Dynamically, it could, however, happen that the system
is eventually prevented from approaching the most prob-
able state as predicted by the theory, when initially pre-
pared to fall in region II. While exploring the phase space,
and due to metastability, the system could, in fact, remain
indefinitely trapped in the proximity of the local maxi-
mum. The edges of region II correspond to the lateral edges
of the metastability region reported in the inset in Fig. 1.
The existence of homogeneous and inhomogeneous
phases, corresponding to different local maxima of the
entropy, can be checked by computing the probability
distribution function of M. In Fig. 4, we report the histo-
grams of the magnetization computed in the time interval
20< t 	 100 forU � 0:6 and distinct values ofM0. When
M0 � 0:08, the system falls in region I of Fig. 3: Only one
peak is here observed aroundM � 0, the mean value being
slightly different from zero due to finite size effects [see
Fig. 4(a)]. ForM0 � 0:1, i.e., in region III, an isolated peak
is manifested, associated with an inhomogeneous state [see
Fig. 4(d)]. For M0 � 0:0848 (region II), two peaks are
identified at M� 0 and M� 0:1 for N � 106 (the peaks
are shifted to the right for N � 105 due again to finite size
effects), implying the existence of two local maxima of the
entropy [see Fig. 4(b)]. The situation in Fig. 4(c) is inter-
mediate between the single-peaked and the double-peaked
distribution although the M0 value lies inside region III,
possibly due to finite size effects. One should add that,

close to the transition, the positions of the magnetized
peaks are only in rough agreement with the theory.

In this Letter, we have investigated the emergence of
out-of-equilibrium QSSs in the HMF model, a paradig-
matic representative of systems with long-range interac-
tions. We have proved the existence of out-of-equilibrium
first- and second-order phase transitions. The transition
lines merge at a tricritical point. Coexistence of homoge-
neous (zero magnetization) and inhomogeneous (nonzero
magnetization) phases is present at the first-order phase
transition line, and a metastability region is revealed. Such
transitions are expected generically in models with long-
range interactions; see, e.g., Ref. [17]. Our conclusions are
analytically derived using an approach pioneered by
Lynden-Bell [4]. The agreement with the simulations rep-
resents an a posteriori validation of Lynden-Bell’s sce-
nario. Besides their intrinsic theoretical relevance, we
expect our results to translate into novel experimental
solutions, with reference to those applications where
long-range forces are active and QSSs have been observed
(e.g., plasmas and Coulomb systems).
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FIG. 4. Probability distribution functions of M. Dashed (solid)
lines stand for N � 105 (N � 106), averaged over 103 (102)
independent realizations. M is always sampled in the time range
20< t 	 100.
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