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We have measured the critical atom number in an array of harmonically trapped two-dimensional (2D)
Bose gases of rubidium atoms at different temperatures. We found this number to be about 5 times higher
than predicted by the semiclassical theory of Bose-Einstein condensation (BEC) in the ideal gas. This
demonstrates that the conventional BEC picture is inapplicable in an interacting 2D atomic gas, in sharp
contrast to the three-dimensional case. A simple heuristic model based on the Berezinskii-Kosterlitz-
Thouless theory of 2D superfluidity and the local density approximation accounts well for our experi-
mental results.
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Bose-Einstein condensation (BEC) at a finite tempera-
ture is not possible in a homogeneous two-dimensional
(2D) system, but an interacting Bose fluid can nevertheless
become superfluid at a finite critical temperature [1]. This
unconventional phase transition is described by the
Berezinskii-Kosterlitz-Thouless (BKT) theory [2,3], and
does not involve any spontaneous symmetry breaking
and emergence of a uniform order parameter. It is instead
associated with a topological order embodied in the pairing
of vortices with opposite circulations; true long-range
order is destroyed by long wavelength phase fluctuations
even in the superfluid state [4,5].

Recent advances in producing harmonically trapped,
weakly interacting (quasi-)2D atomic gases [6–14] have
opened the possibility for detailed studies of BKT physics
in a controllable environment. There has been some theo-
retical debate on the nature of the superfluid transition in
these systems [15–19] because the harmonic confinement
modifies the density of states compared to the homogenous
case. This allows for ‘‘conventional’’ finite temperature
Bose-Einstein condensation in the ideal 2D gas [20].
Early experiments have been equally consistent with the
BEC and the BKT picture of the phase transition. For
example, the density profiles at very low temperatures [6]
are expected to be the same in both cases. However, recent
studies of matter wave interference of independent 2D
atomic clouds close to the transition have revealed both
thermally activated vortices [12,13] and quasi–long-range
coherence properties [13] in agreement with the BKT
theory [21,22].

In this Letter, we study the critical atom number in an
array of 2D gases of rubidium atoms, and observe stark dis-
agreement with the predictions of the ideal gas BEC the-
ory. We detect the critical point by measuring (i) the onset
of bimodality in the atomic density distribution and (ii) the
onset of interference between independent 2D clouds.
These two measurements agree with each other, and for
the investigated range of temperatures T � 50–110 nK
give critical atom numbers Nc which are �5 times higher
than the ideal gas prediction for conventional Bose-

Einstein condensation in our trap [20]. For comparison,
in three-dimensional (3D) atomic gases, where conven-
tional BEC occurs, the increase of the critical atom number
due to repulsive interactions is typically on the order of
10% [23,24]. A simple heuristic model based on the BKT
theory of 2D superfluidity and the local density approxi-
mation gives good agreement with our measurements.

In [13] we studied quasi–long-range coherence of a
trapped 2D gas, which is directly related to the superfluid
density �s. In that case, signatures of the BKT transition
emerge only once a significant part of the cloud becomes
superfluid. Since the atomic density in the trap is not
uniform, this happens slightly below the true critical tem-
perature for the onset of superfluidity in the trap center, and
the observed transition is rounded off. The present study
concentrates on the exact critical point and relates to the
total density at criticality �c, which has been of long-
standing theoretical interest [25,26].

Our experimental procedure for the preparation of cold
2D Bose gases has been described in [13]. We start with a
87Rb 3D condensate in a cylindrically symmetric magnetic
trap with trapping frequencies !x � 2�� 10:6 Hz and
!y � !z � 2�� 125 Hz. To split the sample into 2D
clouds we add a blue detuned one-dimensional optical
lattice with a period of d � 3 �m along the vertical direc-
tion z (see Fig. 1). The lattice is formed by two laser beams
with a 532 nm wavelength and focused to waists of about
120 �m, which propagate in the yz plane and intersect at a
small angle. The depth of the lattice potential around x � 0
is h� 35 kHz, corresponding to a vertical confinement of
!z � 2�� 3:0 kHz. The finite waists of the lattice beams
result in a slow variation of!z along x, and the variation of
the zero point energy @!z�x�=2 modifies !x to 2��
9:4 Hz at the trap center.

Figure 1 shows contour lines for the full trapping poten-
tial. The number of significantly populated lattice planes is
�2–4 in the investigated temperature range (50–110 nK).
The vast majority of atoms is trapped in the central x region
where the 2D criterion kT < @!z�x� is fulfilled and the
tunneling rate between adjacent sites is negligible on the
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time scale of the experiment. However, the exchange of
particles between lattice sites is still possible via the far
wings of the energy distribution (at energies above
460 nK). This ensures thermal equilibrium between the
planes [27] on the time scale of�100 collision times [28],
which in our case corresponds to a fraction of a second.
The 2D interaction strength is g � �@2=m�~g, where the
dimensionless coupling constant ~g � as

���������������������
8�m!z=@

p
�

0:13, as � 5:2 nm is the scattering length, and m the
atomic mass [15,29]. The interaction energy Eint � g�0,
where �0 is the peak density, also satisfies the 2D criterion
Eint < @!z.

We measure the critical atom number Nc by varying the
total atom number N at a fixed temperature. We start with a
highly degenerate sample and keep it trapped for a time �
varying between 1 and 10 s. During this time we maintain a
constant temperature by applying a constant radio fre-
quency field in the range of 10–25 kHz above the fre-
quency corresponding to the bottom of the trap. As the hold
time � increases, N gradually reduces and drops below Nc
due to inelastic losses.

The atomic density profiles are recorded in the xz plane
by resonant absorption imaging along y after t � 22 ms of
time of flight expansion. Along z the profiles are Gaussian,
closely corresponding to the zero point kinetic energy
@!z�x � 0�=4. Along x, for all N <Nc a Gaussian distri-
bution fits the data well [30]. For N >Nc, the profiles
exhibit a clearly bimodal shape (Fig. 2). The bimodal
distributions are fitted well by the sum of a Gaussian,
corresponding to the ‘‘normal component,’’ and a parabolic
Thomas-Fermi (TF) profile expected from superfluid hy-
drodynamics [23].

From the bimodal fits we extract the total atom number
N and the number of atoms within the TF part of the
distribution N0. The absolute detection efficiency of our
imaging system was calibrated by measuring critical atom
numbers for 3D BECs, taking into account interaction
effects [23,24]. For a given energy of the evaporation
surface Eevap the width of the Gaussian part of the distri-
bution is nearly independent ofN (see inset of Fig. 3). For a

quasi–non-degenerate gas (N � Nc=2) this width is given
by the temperature. We thus use this estimate for T also in
the degenerate regime (N * Nc), although one could have
expected in this regime a deviation from the Gaussian law

FIG. 2. Phase transition in a rubidium 2D gas. 2D clouds
confined parallel to the xy plane are released from an optical
lattice and the density distribution is recorded by absorption
imaging along y after t � 22 ms of time of flight. The measured
line densities ���x� (�) for an atom number just below (left) and
just above (right) the critical number are displayed together with
bimodal fits (solid lines). The dashed line in the left panel shows
the expected distribution of the 2D ideal gas at the threshold of
conventional BEC in our potential at the same temperature (T �
92 nK). The dotted line in the right panel indicates the Gaussian
part of the bimodal distribution.

FIG. 3. Measurement of the critical point. The number of
atoms in the Thomas-Fermi part of the bimodal distribution
N0 (�) is plotted as a function of the total atom number N.
The solid line shows the linear fit we use to determine Nc, and
the dashed line is its extrapolation. For comparison, the inter-
ference amplitude j�̂�0; k0�j (�) is also displayed as a function of
N. It shows the same threshold Nc within our experimental
precision. The inset shows that the temperature deduced from
the Gaussian part of the fit is to a good approximation constant
for all data points. Horizontal and vertical dashed lines indicate
the average temperature and the critical atom number, respec-
tively. The solid line marks the region used to determine the
average temperature T � 92�6� nK close to the transition. Each
data point is based on 5–10 images, all error bars represent
standard deviations.
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FIG. 1. Experimental setup. Left: A one-dimensional optical
lattice is used to split a magnetically trapped 3D BEC (trans-
parent ellipsoid) into a small array of 2D clouds. Right: Contour
lines of the total (magnetic and light) potential V�x; z� in the y �
0 plane for the lattice phase such that the two central planes are
symmetric with respect to the trap center.
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for the normal fraction. For example, the ideal gas theory
predicts a distribution at the BEC point that is much more
peaked at the center of the cloud (Fig. 2). The temperatures
inferred in this way scale as Eevap � �kT, with � � 10
compatible with the usual 3D values for evaporation times
equal to a few hundred collision times [28]. We estimate
the systematic uncertainties of our atom number and tem-
perature calibrations to be 20% and 10%, respectively.

Figure 3 illustrates the threshold behavior of N0 [31],
and Fig. 4 shows the critical numbers Nc measured at four
different temperatures. In a single 2D ideal gas, BEC is
expected for [20]:

 Nc;id �
�2

6

�
kT
@ �!

�
2
; (1)

where �! is the geometric mean of the two trapping fre-
quencies in the plane. For comparison with our experimen-
tal results, we have numerically integrated the Bose-
Einstein distribution for our confining potential sketched
in Fig. 1. The result depends on a 10% level on the exact
position of the lattice planes relative to the minimum of the
magnetic trap potential. Since we do not fully control this
position, we average over the possible configurations. We
obtain the result Nmulti

c;id � pNc;id, where the effective num-
ber of planes p smoothly grows from �2:2 at 50 nK to �
4:2 at 110 nK. The resulting Nmulti

c;id �T� is shown in Fig. 4 as
a solid line. Our measurements clearly show systematically
higher Nc than expected for ideal gas condensation. An
empirical function Nc � �Nmulti

c;id �T�, with the scaling fac-
tor � as the only free parameter, fits the data well and gives
� � 5:3�5�, where the quoted error is statistical.

We also study the coherent fraction of the 2D gas and
compare its behavior with the bimodal density profiles. We
investigate the interference patterns that form after re-
leasing the independent planar gases from the trap

(Fig. 5) [13]. Fourier transforming the density profile
��x; z� ! F 	��x; z�
 � �̂�x; kz� allows us to quantify the
size of the coherent, i.e., interfering part of the gas as a
function of N. The spatial frequency corresponding to the
fringe period for the interference of neighboring planes is
k0 � md=@t. We find that j�̂�x; k0�j is well fitted by a pure
Thomas-Fermi profile. Within our experimental accuracy,
the radii RTF�k0� of these profiles are equal to those ob-
tained from a bimodal fit to the density. In particular, the
onsets of interference and bimodality coincide (circles and
diamonds in Fig. 3, respectively).

We now turn to the interpretation of our measurements
in the framework of the BKT theory of 2D superfluidity.
The theory predicts a universal jump of the superfluid
density at the transition, from �s � 0 to �s�2 � 4, where
� � h=

����������������
2�mkT
p

is the thermal wavelength [21] (for ex-
periments, see [1,13]). However, the total density at the
critical point �c is not universal because it depends on the
microscopic interactions. For weak interactions (~g < 1),
�c�2 � ln�C=~g� [25], with C � 380� 3 given by high-
precision Monte Carlo calculations [26]. For our value of
~g � 0:13 (experimentally confirmed by measuring RTF as
a function of N0) this gives �c�2 � 8:0.

In a harmonic trap, within the local density approxima-
tion, the transition is expected to occur when the density in
the center of the cloud reaches the critical value �c. We can
heuristically relate the critical density and the correspond-
ing critical atom number Nc;BKT using the experimentally
observed Gaussian density profiles. For a single plane with
a quadratic confining potential V�x; y�, integrating
��x; y� � �c exp	�V�x; y�=�kT�
 gives
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FIG. 4. Critical point in an interacting 2D gas. The critical
atom number Nc (�) is measured at four different tempera-
tures T. Displayed error bars are statistical. The solid line shows
the ideal 2D gas BEC prediction Nmulti

c;id . The dashed line is the
best empirical fit to the data, which gives Nc � �Nmulti

c;id with
� � 5:3�5�.

FIG. 5. Coherence and density profile below the transition.
Interference of 2D clouds is used to compare the coherent part
of the cloud with the part following the Thomas-Fermi density
distribution. Left: Interference patterns in the xz plane (see
example in inset) are Fourier transformed along the expansion
axis z and averaged over ten images taken under identical
conditions, to obtain j�̂�x; kz�j. Right: Within experimental pre-
cision, fits to the total density profile j�̂�x; 0�j and the interfer-
ence amplitude profile j�̂�x; k0�j give the same Thomas-Fermi
diameter 2RTF, indicated by the dashed lines. The weak second
harmonic peak at kz � 2k0 reveals small occupation of the outer
lattice planes.
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 Nc;BKT � �c�
2

�
kT
@ �!

�
2
� �c�

2 6

�2 Nc;id: (2)

For �c�2 � 8:0 this gives Nc;BKT=Nc;id � 4:9. In a lattice
configuration this ratio changes only slightly. We set the
peak density in the most populated plane to �c, and sum the
contributions of all planes j using the corresponding po-
tentials Vj (here we neglect the small nonharmonic effects
due to finite laser waists). The total population in the lattice
is then Nmulti

c;BKT � p0Nc;BKT, where the effective number of
planes p0 varies from 2.4 at 50 nK to 3.5 at 110 nK. We thus
obtain Nmulti

c;BKT=N
multi
c;id ’ 4:7, which is close to the experi-

mental ratio � � 5:3.
One could try to reproduce our observations within the

self-consistent Hartree-Fock (HF) theory [19] (see also
[32–34]), by replacing V�r� with the effective mean field
potential V�r� 
 2g��r� and again setting the peak density
to the BKT threshold �c. For very weak interactions,
log�1=~g� � 1, analytical HF calculation gives critical
numbers which are only slightly larger than Nc;id [19].
This approach could in principle be implemented numeri-
cally for our value of ~g and our lattice geometry. However,
it has been suggested [35] that treating interactions at the
mean field level is insufficient for ~g� 10�1, because the
interactions are strong enough for the critical region to be a
significant fraction of the sample. In future experiments
with atomic gases ~g could be varied between 1 and 10�4

using Feshbach resonances, allowing for detailed tests of
the microscopic BKT theory and the possible breakdown
of the mean field approximation.

In conclusion, we have shown that the ideal gas theory of
Bose-Einstein condensation, which is extremely successful
in 3D, cannot be used to predict the critical point in
interacting 2D atomic gases, where interactions play a
profound role even in the normal state. A much better
prediction of the critical point is provided by the BKT
theory of 2D superfluidity. We have also shown that,
despite the absence of true long-range order, the low
temperature state displays density profiles and local coher-
ence largely analogous to 3D BECs.
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T. Esslinger, J. Low Temp. Phys. 138, 635 (2005).

[12] S. Stock, Z. Hadzibabic, B. Battelier, M. Cheneau, and
J. Dalibard, Phys. Rev. Lett. 95, 190403 (2005).
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