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We develop an effective medium approach to the mechanics of disordered, semiflexible polymer
networks and study the response of such networks to uniform and nonuniform strain. We identify distinct
elastic regimes in which the contributions of either filament bending or stretching to the macroscopic
modulus vanish. We also show that our effective medium theory predicts a crossover between affine and
nonaffine strain, consistent with both prior numerical studies and scaling theory.
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Semiflexible polymer networks form a distinct class of
gels whose mechanics is important for both biophysical
and materials research. These cross-linked polymer net-
works differ substantially from the flexible polymer gels
and rubbers [1] due to the rigidity of the individual poly-
mers [2,3]. Because the thermal persistence length of the
constituent filaments is much longer than the typical dis-
tance between cross-links, these materials can store elastic
strain energy in both stretching and bending the filaments.
The cytoskeleton, a complex assembly that includes stiff
filamentous proteins present in most eukaryotic cells, is an
especially common example of such a semiflexible net-
work [4]. Such networks dominate the mechanical proper-
ties of the cytosol and are at the heart of cellular force
production and morphological control.

Theoretical studies of the elastic response of randomly
cross-linked, stiff, filamentous networks have recently un-
covered a surprising crossover between distinct mechani-
cal regimes of these semiflexible networks [5,6]. For given
filament elastic parameters, there is a transition from strain
energy storage in filament-stretching modes at higher net-
work densities to filament-bending modes in sparser net-
works. This transition is accompanied by a change in the
geometry of the deformation field over mesoscopic
lengths. At higher densities, the network deforms affinely
as expected from continuum elasticity theory, while at
lower densities, where the elastic energy is stored in bend-
ing modes, the network deformation field is nonaffine over
mesoscopic distances. Recent experiments [7,8] support
the existence of this affine (A) to nonaffine (NA) crossover.
However, a fundamental understanding of the relation of
the network architecture and individual filament mechan-
ics to the collective elasticity of the network remains
elusive, and prior theoretical work has been primarily
numerical.

In this Letter, we develop an analytical model of the
mechanical response of two-dimensional, disordered,
semiflexible networks. We introduce a mean-field or effec-
tive medium theory of the system that allows us to calcu-
late the elastic response of the system to uniformly

imposed as well as wave number-dependent strain fields.
From this mechanical response, we identify an A-NA
crossover and obtain a phase diagram of the system show-
ing the regimes of affine and nonaffine behavior. Our study
also demonstrates the presence of a length scale controlling
the A-NA crossover that corresponds well with prior re-
sults from simulation and scaling theory [5].

We study a model two-dimensional system constructed
as follows. We arrange infinitely long filaments in the plane
of a two-dimensional hexagonal lattice so that at each
lattice point three filaments cross. In this way, each lattice
point is connected to its nearest neighbor by a single
filament. The network is shown in Fig. 1. The filaments
are given an extensional spring constant � and a bending
modulus �. The cross-links at each lattice site do not
constrain the angle between the crossing filaments. We
introduce finite filament length L into the system by cutting
bonds with probability 1� p, where 0<p< 1, with no
spatial correlations between these cutting points. This gen-
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FIG. 1 (color online). Schematic figure of the filament net-
work. The solid red lines represent the undeformed filament
network, while the dashed blue lines show the deformation field
having wave vector q and displacement amplitude u (shown in
the upper left corner of the figure). The black arrows show the
displacement field at each lattice point. This perfect lattice is
disordered by making randomly placed cuts in the infinitely long
filaments. These are not shown.
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erates a broad distribution of filament lengths with a finite
average hLi, while introducing quenched disorder. We then
study the mechanical response of this disordered network
in the linear response regime. The main assumption in our
theory is that the depleted network has the same mechani-
cal response as a uniform network with effective elastic
constants �m and �m. These are determined by requiring
that strain fluctuations produced in the original, ordered
network by randomly cutting the filaments have zero
average. Here we do not explicitly consider thermal fluc-
tuations, whose role in determining the longitudinal com-
pliance of filaments has been discussed before [9]. These
thermal effects can be incorporated in the present model
through a renormalized parameter � [5].

The elastic energy of the strained network, arising from
bending and stretching of the constituent filaments, can be
written in terms of the displacement vector ui at each
lattice site i. To quadratic order in u, the stretching (Es)
and bending (Eb) energies are

 Es �
1

2
�
X
hiji

�uij:r̂ij�2; (1)

 Eb �
1

2
�R�2

X
h bhiji
�uih � r̂ij � uij � r̂ih�

2; (2)

where R is the lattice constant, r̂ij is a unit vector directed
from the ith to the jth equilibrium lattice site, and uij is the
difference in the strain field between those lattice sites.

It is now simple to determine the collective elastic
properties of the perfect lattice; doing so for the disordered
lattice generated by randomly cutting the filaments is less
trivial. We determine the spring constant and bending
modulus of a spatially uniform effective system [10] that
reproduces the mechanics of our disordered system in an
average sense as described below.

We first apply a uniform dilation to the uniform system
with spring constant �m so that all bonds are stretched by
�‘. There is no bending deformation. If we now replace a
single filament segment connecting points (say) i and j (see
Fig. 1) by one of spring constant �0, the virtual force
needed to the fix positions of i and j is f � �‘��m �
�0�. If f were applied to the same segment in the unstrained
network, the resulting change in length would be
f=��m=a� � �m � �0�, where a� (0< a� < 1) is a net-
work material parameter that includes the contribution of
the elasticity of the entire network. It may be written in
terms of the dynamical matrix D�q� as

 a� �
1

3

X
q

Tr�Ds�q� 	D
�1�q�
; (3)

where the sum is over the first Brillouin zone. HereD�q� �
Ds�q� �Db�q�, where Ds;b�q� define the stretching and
bending contributions, respectively, to the full dynamical
matrix and are given by

 D s�q� � �m
X
hiji

�1� e�iq:r̂ij
r̂ijr̂ij; (4)

 

Db�q� � �mR�2
X
hiji

f4�1� cos�q:r̂ij�
 � �1� cos�2q:r̂ij�
g

� �I� r̂ijr̂ij�; (5)

with I the unit tensor and the sums are over nearest
neighbors [10]. Note that, for small q, Db � q4 and Ds �
q2 have the expected wave number dependencies for bend-
ing and stretching.

From linearity, the extra displacement �u of the segment
ij due to the change in that filament segment’s spring
constant in the dilated network is the same as its extension
in response to the force f applied to it. Therefore, this
additional displacement or ‘‘fluctuation‘‘ is

 �u �
��m � �

0��‘
�m=a

� � �m � �
0
: (6)

We now average this extra displacement over the ensemble
of possible filament substitutions, with the statistical dis-
tribution of longitudinal spring constants:

 P��0� � p���� �0� � �1� p����0�; (7)

where 1� p is the probability of a cut bond and ��	 	 	� is
the Dirac delta function. To determine the elastic properties
of the effective medium, we adjust the medium spring
constants�m so that h�ui � 0; i.e., the lattice displacement
in our spatially homogeneous effective medium material is
identical to the average displacement in the spatially het-
erogeneous disordered material.

Using this procedure, we find a spatially homogeneous
effective medium having spring constant �m given by

 

�m
�
�

� p�a�
1�a� if p > a�;
0 if p � a�:

(8)

The contribution of network bending to the effective me-
dium spring constant (which is proportional to the collec-
tive shear modulus) arises only through the effect of the
bending modulus on a� in Eqs. (3)–(5).

To determine how the shear modulus depends on the
average filament length, we note that the mean filament
length is hLi � pR�2� p�=�1� p�. We plot in Fig. 2 us-
ing the solid symbols the effective medium spring constant
as a function of the mean filament length measured in units
of R.

We now consider the response of the network to a
q-dependent strain as depicted in Fig. 1. We modify both
the bending modulus and spring constant of one filament
spanning lattice sites h, i, and j so that �m ! �0, �m ! �0,
and compute the virtual force and torque needed to main-
tain the position of site i in the middle of this triad of lattice
sites (Fig. 1). Using these forces and linearity, we compute
the displacement of the ith site in response to the elastic
constant substitution made above. We find that the dis-
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placements along the filament (�‘jj) and perpendicular to it
(�‘?) are given by
 

�‘k �
��m � �0��uij � uih� 	 r̂ij

2��m=a� � �m � �0�
;

�‘? �
��m � �0��uij � uih� 	 �ẑ� r̂ij�

�m=b� � �m � �0
;

(9)

where a� is defined in Eq. (3) and the analogous quantity
b� is defined by

 b� �
1

3

X
q

Tr�Db�q�D
�1�q�
 (10)

using the same sum over wave vectors as in Eq. (3). For
filaments on a triangular lattice interacting via cross-links
that do not apply torques, the stretching and bending
modes are orthogonal to first order in deformations.

We now average these displacements over the disorder,
and, to find the effective medium elastic constants, we
demand that the disorder-averaged displacements h�‘ki
and h�‘?i vanish. The probability distribution for �0 is
given by Eq. (7), but a nonzero value of the bending
modulus at site i requires the presence of both filament
segments on either side of that site so that

 P��0� � p2���� �0� � �1� p2����0�: (11)

Since we consider uncorrelated distributions of the
bending and elastic constants, we find the effective me-
dium elastic constants �m and �m by solving Eq. (9) for
h�‘ki � h�‘?i � 0 independently to arrive at

 

�m
�
�

� p�a�
1�a� if p > a�;
0 if p � a�;

(12)

 

�m
�
�

� p2�b�

1�b� if p >
�����
b�
p

;

0 if p �
�����
b�
p

:
(13)

Figure 2 shows the effective medium values of �m (solid
symbols) and �m (open symbols) as a function of hLi for
different values of bending rigidity �, at a fixed value of
� � 1. The unit of length is the lattice constant R (set to
unity), and the energy scale is arbitrary.

There are three length scales in the system: (i) the
average length of filaments hLi, (ii) a length lb �
��=��1=2 associated with the relative ease of filament
stretching to bending, and (iii) the mean distance between
cross-links, which to a good approximation is R [11]. We
present a mechanical phase diagram of our system spanned
by hLi and lb in Fig. 3 that shows the regimes correspond-
ing to zero and finite values of �m and �m. Generically, for
long enough filaments, the system has finite collective
extension and bending moduli. As the mean filament
length is reduced, the collective shear modulus vanishes
at the rigidity percolation transition [10,12,13]. We also
find a new rigid phase (�m > 0� that has a vanishing
bending modulus �m [14]. We further note that the lower
range in lb corresponds to nonthermal systems in which the
distance between cross-links is large compared with the
molecular scale (i.e., at low volume fraction) but that, with
thermal effects, one effectively goes to higher lb.

The collective elastic properties of the effective medium
can be calculated from the stored energy density E under a
given network strain. For a strain field of the form u �
R� cos�q 	 x�ẑ� q̂, the shearGeff and bending moduliKeff

can be extracted as the coefficients of the q2 and q4 terms
of hEi=�2, where the angle brackets imply an average of
the direction of q with respect to the underlying lattice.
Geff is proportional to �m alone, while Keff is a function of
�m and �m.

In Fig. 4, we plot the effective medium shear and bend-
ing moduli as a function of hLi. Motivated by earlier work
[5] on the A-NA transition, we have rescaled hLi by � �
R�R=lb�

z, with z � 1=4. A comparison ofGeff in this figure

FIG. 3 (color online). The effective medium mechanical phase
diagram spanned by hLi and lb. The thick solid line marks the
rigidity percolation transition where the material acquires a finite
shear modulus [15]. The dashed line shows the crossover from
the nonaffine to the affine regime.
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FIG. 2 (color online). The effective medium spring constant
�m (solid symbols) and bending constant �m (open symbols)
with the average filament length hLi (legend shows different
values of �, with � � 1).
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with �m ( / Geff) from Fig. 2 demonstrates a remarkably
accurate data collapse whose accuracy is enhanced as we
move farther away from rigidity percolation. Moreover, we
find that the same rescaling factor generates an equally
accurate collapse of the Keff data.

The collapse of our calculated elastic moduli with a
single parameter, the length scale �, is in good accord
with the numerical data collapse found in previous simu-
lations [5]. Thus, the mean-field theory demonstrates all
previously observed mechanical signatures of the A-NA
crossover. The analytic results, however, suggest z  1=4,
while the prior numerics pointed to z � 1=3. The depen-
dence of the network mechanics on hLi=� rather than
entirely on hLi=R shows that the observed crossover is
not governed by rigidity percolation [5]. The effective
medium approach introduced here does not allow us to
explore the spatial heterogeneities of the strain field under
uniformly imposed shear, so it is impossible to explore the
geometric interpretation of � with this technique.

Although the effective medium approach is inexact and
fails to account for the correct spatial structure of the strain
field in the disordered material, it does show an abrupt
crossover that appears mechanically identical to the A-NA
crossover. The crossover is controlled by a single emergent
length scale �, which obeys a similar scaling relation to
that found empirically from previous numerical results.
From these Geff plots (Fig. 4), we have extracted the A-
NA crossover from the location of the largest change in the
slope of the curves. This A-NA boundary is plotted in
Fig. 3.

In conclusion, we used an effective medium theory to
explore the mechanical properties of disordered filament
networks. We find that this mean-field approach to the
mechanics of such networks captures the mechanical as-

pects of the A-NA crossover including the identification of
an emergent mesoscopic length scale � controlling the
mechanics of the system.
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FIG. 4 (color online). The effective medium shear Geff=G0

(solid symbols) and bending Keff=K0 (open symbols) moduli
normalized by their respective values in the infinite filament
limit for a perfect network are plotted as a function of the mean
filament length hLi divided by the nonaffinity length � �
R=�R=lb�

z, with z � 0:25. The inset shows our method of locat-
ing the ‘‘knee’’ in Geff as the peak in those curves. The data
collapse is shown for four data sets differing in lb as labeled in
the legend.
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