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Motivated by recent experiments on Na4Ir3O8 [Y. Okamoto, M. Nohara, H. Aruga-Katori, and
H. Takagi, arXiv:0705.2821 (unpublished)], we study the classical antiferromagnet on a frustrated
three-dimensional lattice obtained by selectively removing one of four sites in each tetrahedron of the
pyrochlore lattice. This ‘‘hyperkagome’’ lattice consists of corner-sharing triangles. We present the results
of large-N mean field theory and Monte Carlo computations on O�N� classical spin models. It is found
that the classical ground states are highly degenerate. Nonetheless a nematic order emerges at low
temperatures in the Heisenberg model (N � 3) via ‘‘order by disorder,’’ representing the dominance of
coplanar spin configurations. Implications for ongoing experiments are discussed.
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Antiferromagnets on geometrically frustrated lattices
often possess macroscopically degenerate classical ground
states that satisfy peculiar local constraints imposed by the
underlying lattice structure [1]. Such highly degenerate
systems are extremely sensitive to thermal and quantum
fluctuations, and thereby intriguing classical and quantum
ground states may emerge via ‘‘order by disorder’’ [2]. On
the other hand, systems may remain disordered even at
zero temperature [3]. These paramagnetic states are called
spin liquid phases and their classical and quantum varieties
have been recent subjects of intensive theoretical and
experimental research activities [1]. Excitement in such
spin systems [4] has also led to developments in meso-
scopics [5], optical lattices [6], and quantum coherence and
computing [7].

Among several examples of two and three-dimensional
frustrated magnets, the kagome and pyrochlore lattices
have obtained particular attention because a relatively
large number of materials with the magnetic ions sitting
on these lattice structures are available [1]. Both of these
lattices are corner-sharing structures of a basic unit: the
triangle and tetrahedron, respectively. Despite this similar-
ity, the classical Heisenberg magnet orders on the kagome
lattice [8,9] while it remains disordered on the pyrochlore
lattice [10]. The nature of the spin- 1

2 quantum Heisenberg
magnets on these lattices has not been settled and remains
an important open problem [11,12]. On the other hand,
spin- 1

2 systems are rare on these lattices and other degrees
of freedom such as lattice distortions may play an impor-
tant additional role. As a result, direct experimental tests on
spin- 1

2 quantum magnets have been difficult to realize.
In this context, the recent experiments on Na4Ir3O8 [13]

may provide an important clue on these issues, albeit in a
different three-dimensional frustrated lattice. Here Ir4�

carries spin- 1
2 as the five d electrons form a low spin state

in the t2g level. The Ir and Na ions together occupy the sites
of the pyrochlore lattice such that only three of the four
sites of each tetrahedron are occupied by Ir. The resulting

lattice of magnetic Ir is a network of corner-sharing tri-
angles as shown in Fig. 1, where each triangle is derived
from different faces of the tetrahedra. In analogy to the
kagome lattice in two dimensions, it is called the hyper-
kagome lattice. Even though the Curie-Weiss temperature
is large, �W � �650 K, the susceptibility and specific heat
show no sign of magnetic ordering, nor lattice distortion,
down to T � j�W j=200 [13], suggesting that it may be a
spin liquid down to low temperatures.

In this Letter, we study the classical antiferromagnet on
the hyperkagome lattice. Such investigations not only re-
veal the behavior of the antiferromagnet in the classical
regime, but also provide an important starting ground for
the understanding of quantum fluctuation effects. We first
study the large-N limit of the O�N� vector spin model at
zero temperature and compute the spin-spin correlation
function in the large-N mean field theory [14,15]. It is
found that there exist macroscopically degenerate ground
states.

Then we perform large-scale Monte Carlo computations
on the Ising (N � 1) and the Heisenberg (N � 3) models.

FIG. 1 (color online). The hyperkagome lattice. The thin lines
show the underlying pyrochlore lattice.
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The Heisenberg model (with exchange coupling J) remains
disordered down to quite low temperatures, exhibiting very
similar spin-spin correlations to those of the large-N
model. These correlations show a characteristic dipolar
structure in the reciprocal space, which can be explained
by a mapping to a gauge theory [15,16]. On the other hand,
the spin correlations in the Ising (N � 1) model turn out to
be quite different.

Most interestingly, a first-order transition to a long range
nematic order is observed in the Heisenberg model at a
finite temperature. As explained below, this nematic order
emerges via an ‘‘order by disorder’’ effect and represents
the dominance of coplanar spin configurations. In the
disordered phase no evidence of magnetic ordering is
found, while our numerical data cannot definitely confirm
the presence or absence of magnetic order at temperatures
below the onset of nematic order. We have also investi-
gated the effect of an external magnetic field h and found
that a collinear order is chosen when h � 2 J in analogy to
a similar study on the kagome lattice [17].

The lattice and local constraints.—The hyperkagome
lattice, relevant to Na4Ir3O8, can be represented by the
simple cubic lattice with a 12-site basis, as shown in
Fig. 1. This lattice is also a three-dimensional network of
corner-sharing triangles. The model for the classical
nearest-neighbor antiferromagnet on the hyperkagome lat-
tice can be written as

 H � J
X
hiji

Si � Sj �
J
2

X
�

�S��
2 � const; (1)

where J > 0, hi; ji represents the sum over the nearest
neighbors, and Si � �S1

i ; . . . ; SNi � are N-component spins
of fixed length N. S� �

P
i��Si is the vectorial sum of the

spins in each triangle and
P

� represents the sum over all
triangles. For N � 2, the classical ground state satisfies
S� � 0 for every triangle while the constraint on the Ising
model is S� � 	1. Thus, from the outset, one may expect
that the physics of the larger-N models would be different
from the Ising case. This is different from the antiferro-
magnet on the pyrochlore lattice where the Ising and
Heisenberg models satisfy the same constraint.

Large-N mean field theory.—Following Refs. [14,15],
we rewrite the Hamiltonian asH � T

2

P
i;jMijSi � Sj, where

Mij is the interaction matrix that has the information about
the nearest-neighbor interaction. The corresponding parti-
tion function is given by Z �

R
D�D�e�S��;�� with the

action S��; �� �
P
i;j


1
2Mij�i ��j �

�i
2 �ij��i ��i � N��,

where �i is an N-component real vector field and �i the
Lagrange multiplier for the constraint �i ��i � N.

Now we take the N ! 1 limit and set a uniform �i �
�0. The locations i � �l; �� of spins can be labeled by
those of the cubic unit cell l � 1; . . . ; nc and the lattice
sites � � 1; . . . ; 12 within the unit cell (nc is the total
number of the unit cells in the lattice). The Fourier trans-
form with respect to the positions of the unit cells leads to
S �

P
q
P
�;�

1
2A

��
q �q;� ��q;� with A��q � M��

q � ����0.

Here �0 and the eigenvalues mq;� of the 12� 12 interac-
tion matrix M��

q are determined by the saddle point equa-
tion, 12nc �

P
q
P12
��1

1
�0�mq;�

.

It is found that the lowest eigenvalue is fourfold de-
generate and independent of the wave vector. The next
lowest eigenvalue has a dispersion and becomes the
same as the lowest eigenvalue only at q � 0. These fea-
tures are very similar to those in the kagome and pyro-
chlore lattices. These results imply that the spin struc-
ture of this system is indeed highly frustrated and that
magnetic order is suppressed. The static spin-spin correla-
tion function can be computed via [14,15] hSq;� � S�q;�i �P12
��1
�Uq;��U�q;���=��0 �mq;���, where Uq;�� is a uni-

tary transformation that diagonalizes the interaction matrix
M��

q . At zero temperature, the four degenerate eigenvalues
dominate the behavior of the spin-spin correlation func-
tion. The resulting zero temperature structure factor,
S�q� �

P
��hSq;� � S�q;�i, in the [hhl] plane of the recip-

rocal space is shown in Fig. 2. The presence of high
intensity along bow-tie structures is apparent and qualita-
tively similar to that found on the pyrochlore lattice. As
discussed below, the structure factor in the large-N limit is
very similar to that found by Monte Carlo simulation for
the Heisenberg model (N � 3) above the nematic ordering
transition temperature, but quite different from the Ising
(N � 1) case.

Dipolar spin correlations.—We found that the real space
spin-spin correlation function at long distances is well
described by the following dipolar form:

 hS	i S


j i / �	


�
3�ei � rij��ej � rij�

jrijj5
�

ei � ej
jrijj3

�
; (2)

where rij is a vector connecting sites i and j, and 	,
 � x,
y, z. The ‘‘dipolar vectors’’ ei are shown in Fig. 3.

In analogy to the pyrochlore [15], we may understand
the spin correlations in this system by mapping to a pure
Maxwellian action with a ‘‘Gauss law’’ constraint. We first
consider a dual lattice of the hyperkagome lattice; the sites
on the hyperkagome lattice should be placed on the bonds

FIG. 2. Contour plots of the structure factor in the [hhl] plane.
(a) large-N theory at zero temperature. (b) Monte Carlo simu-
lations at T=J � 1=100 and L � 8. Axes range from�4� to 4�
and both plots are at the same resolution.

PRL 99, 037201 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
20 JULY 2007

037201-2



of the dual lattice. This dual lattice can be obtained by
connecting centers of the tetrahedra of the underlying
pyrochlore lattice, but only along the directions that would
pass through the sites of the hyperkagome lattice. Then
there exists a unique bond � (on the dual lattice) for a given
site i. Let us define e0� as the unit vector along the bond �
(see Fig. 3). We now define N number of ‘‘magnetic’’
vector fields b	� along the bond � via b	� � S	�e�, where
S	� and e� represent the spin and unit vector defined earlier
on the hyperkagome lattice. Notice that the direction of
these magnetic vector fields is not along e0�. Nonetheless
the magnetic vector fields satisfy Div b	 �

P
�e0� � b	� �P

�e0� � e�S	� � 0 on the dual lattice. This is a direct con-
sequence of the constraint

P
i��S

	
i � 0 and e0� � e� ���������

2=3
p

for all �.
We now define coarse-grained magnetic vector fields,

B	, averaged over clusters of spins [15,16]. There exist
many ‘‘flippable’’ spin configurations where local re-
arrangement of the spins in a cluster can be made without
violating the constraints. The coarse-grained field over
such flippable spin configurations will average out to a
small value. Then the large entropic weight is related to the
small values of B	. This feature can be represented by an
entropic weight of the form exp�� K

2

R
drB2� [15,16]. This

Maxwellian form of the ‘‘action’’ and the ‘‘Gauss law’’
constraint will lead to the dipolar form of hB	i �r�B



j �0�i /

�	
�3xixj � r
2�ij�=r

5, and hence the spin-spin correlation
function in Eq. (2). The discovery of such spin correlations
supports the entropic argument a posteriori.

Monte Carlo simulations.—Classical Monte Carlo
simulations for the Heisenberg (N � 3) and Ising (N �
1) models are performed on L� L� L clusters of unit
cells. We mostly discuss the results of the Heisenberg
model here and mention those of the Ising model only as
necessary. In the first place, a first-order transition occurs
in the Heisenberg model. This can be most clearly seen in
the nematic correlation function defined as [8]

 g�ra � rb� � 3
2h�na � nb�2i � 1

2; (3)

and na � 
2=�3
���
3
p
���S1 � S2 � S2 � S3 � S3 � S1�,

where S1, S2, and S3 are three spins on the triangle a.
g�r� � 1 in an ideal coplanar state and g�r� � 0 in a non-
coplanar state. The nematic correlation function for the
next-nearest-neighbors is shown in Fig. 4 and it clearly
shows a first-order transition from a low temperature ne-
matic ordered state to a disordered state. Hysteresis asso-
ciated to this transition occurs in the temperature window
�1� 5� � 10�3 J; coplanar configurations are chosen be-
low this window via ‘‘order by disorder.’’ Similar behavior
is seen for the nearest-neighbor and all higher-neighbor
correlations. The energy and specific heat data are also
consistent with the first-order transition to nematic order
(see Fig. 5). Notice that the Monte Carlo data for the three
largest system sizes L � 6, 8, and 9 are almost identical.
The zero temperature specific heat approaches 11=12 per
spin, which is consistent with the expectation that the low
temperature phase is dominated by coplanar spin struc-
tures. Analysis about coplanar states tells us that there are 4
quartic and 20 quadratic modes per unit cell. Since each
quartic (quadratic) mode contributes 1=4�1=2� to the spe-
cific heat [8], the total specific heat becomes 11=12 per
spin. Interestingly the same zero temperature specific heat
was obtained in the Heisenberg model on the kagome
lattice [8]. The crucial difference between two cases, how-
ever, is that the nematic order on the hyperkagome lattice is
long-ranged at finite temperatures while it becomes long-
ranged only in the T ! 0 limit on the kagome lattice [8].

On the other hand, no magnetic order is seen prior to
nematic order as we do not find any elastic peaks in the spin
structure factor. We cannot, however, reliably comment
whether there is a magnetic ordering or not at still lower
temperatures.

The spin correlations in the Heisenberg model in the
disordered phase are very similar to those in the large-N
mean field theory (see Fig. 2) and can be fitted to the

e1
1e’ e2

e3

e’2

e’2

FIG. 3 (color online). The dipolar (e�) and dual lattice (e0�)
vectors.
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FIG. 4 (color online). The nematic correlation function for the
next-nearest-neighbor triangles. (a) Hysteresis is observed upon
lowering (down) or raising (up) the temperature; (b) finite size
effects scale to a finite first-order transition temperature (lines
guide the eye).
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dipolar form in Eq. (2). On the other hand, the results on
the Ising model are markedly different; the spin-spin cor-
relation function decays exponentially. We expect this is
due to the different form of the local constraint in the Ising
model.

Magnetization and susceptibility in an external field.—
The magnetization as a function of an external magnetic
field h is computed by the Monte Carlo simulations on the
Heisenberg model. At finite temperatures, a weak plateau
develops at h=J � 2, which leads to a singular structure in
the susceptibility (not shown). This can be explained by the
occurrence of a collinear order (up-up-down spin structure)
by disorder at h=J � 2 in analogy to the kagome lattice
case [17].

Implications for experiments.—A Curie-Weiss fit to the
Monte Carlo susceptibility data for T * J leads to �CW �
�2:303�5� J (see Fig. 6). Comparing this with the experi-
mental value �CW � �650 K [13], one obtains J 

280 K. This suggests that the nematic transition may occur
around 0.3–1.5 K if our results are taken seriously, and
below this temperature coplanar spin configurations would
be preferred. Even though our classical computations may
not be directly applicable at such low temperatures, we
suspect that coplanar spin configurations may still domi-
nate at low temperatures even in the quantum regime [18].

Our results also suggest that the spin correlations at T >
J=100� 2–3 K may be dominated by the physics of the
classical spin liquid with dipolar spin correlations; this will
be checked by neutron scattering experiments. Notice that

there is no sign of magnetic ordering down to 2–3 K in the
experiment [13]; this may also be consistent with our
Monte Carlo results that show no evidence of magnetic
ordering above the nematic transition. It remains to be seen
whether the system develops magnetic order at very low
temperatures by ‘‘order by disorder’’ due to classical or
quantum fluctuations or prefers a magnetically disordered
quantum spin liquid. Finally, in the current work, we have
not considered the orbital degree of freedom which may
play an important role in the real material. Studies of
quantum spin models and the role of orbital degrees of
freedom, therefore, are important subjects of future study.
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FIG. 6 (color online). The inverse susceptibility as a function
of temperature, fit to a Curie-Weiss form for T=J � 0:9–2:0.
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