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Anomalous Josephson Effect between Even- and Odd-Frequency Superconductors
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We demonstrate that, contrary to standard wisdom, the lowest-order Josephson coupling is possible
between odd- and even-frequency superconductors. The origin of this effect is the induced odd- (even-
)frequency pairing component at the interface of bulk even- (odd-)frequency superconductors. The
resulting current-phase relation is found to be proportional to cos¢, where ¢ is the macroscopic phase

difference between the two superconductors.
DOI: 10.1103/PhysRevLett.99.037005

It is well known that Josephson coupling occurs between
superconductors with the same order parameter symmetry
[1]. Generally, symmetries with respect to momentum,
spin, and time are to be considered. According to symme-
try with respect to time, superconductors are classified into
even-frequency and odd-frequency superconductors. In
accordance with the Fermi-Dirac statistics, even-frequency
superconductors are characterized by the spin-singlet even-
parity or spin-triplet odd-parity pairing state, while odd-
frequency superconductors feature the spin-singlet odd-
parity or spin-triplet even-parity pairing state. It has been
suggested in Ref. [2] from basic symmetry arguments that
the lowest-order Josephson coupling should be absent
between odd- and even-frequency superconductors.
However, as shown in the present Letter, the Josephson
current can flow via an interface-induced state.

The underlying physics behind this phenomenon can be
explained as follows. Near the interface, due to the break-
down of translational invariance, the pair potential acquires
a spatial dependence which leads to coupling between the
even- and odd-parity pairing states. The Fermi-Dirac sta-
tistics then dictates that the induced pair amplitude at the
interface should be odd (even) in frequency when the bulk
pair potential has an even- (odd-)frequency component.
Consequently, the Josephson coupling between even- and
odd-frequency superconductors becomes possible. To be
compatible with the time reversal invariance in each su-
perconductor, the phase of the interface-induced pair am-
plitude undergoes a 7/2 shift from that of the bulk one.
This twist of the phase of the pair amplitude gives rise to an
anomalous Josephson current, whereby the current phase
relation is proportional to cosg. Although both supercon-
ductors do not break the time reversal symmetry them-
selves, the resulting Josephson coupling does break this
symmetry, since the parities with respect to frequency
dependence in even- and odd-frequency superconductors
differ from each other.

Up to now, almost all of the known superconductors
belong to the symmetry class of the even-frequency pair-
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ing. The possibility of the odd-frequency pairing state in a
uniform system was proposed for 3He in Ref. [3] and for a
superconducting state involving strong correlations in
Refs. [2,4—6]. The realization of the odd-frequency pairing
state in inhomogeneous systems has recently been pro-
posed in ferromagnet-superconductor heterostructures
[7]. Furthermore, two of the present authors have predicted
that the odd-frequency pairing state can be induced in a
diffusive normal metal attached to a spin-triplet supercon-
ductor [8]. However, in these examples the odd-frequency
pairing is realized due to spin-triplet correlations. A ques-
tion naturally arises as to whether the spin-triplet ordering
is a necessary condition for the existence of the odd-
frequency pairing state at a superconducting interface.

In this Letter we address the issue of odd-frequency
pairing in the generic case of a normal metal-
superconductor (N/S) interface, where S has an even-
frequency pairing state in the bulk. We will show that,
quite generally, the odd-frequency component is induced
near a superconducting interface due to the spatial varia-
tion of the pair potential. If a superconductor has an even-
frequency spin-singlet even-parity (ESE) or even-
frequency spin-triplet odd-parity (ETO) pairing state in
the bulk, the pair amplitude at the interface possesses,
respectively, odd-frequency spin-singlet odd-parity
(OSO) or odd-frequency spin-triplet even-parity (OTE).
Similarly, in the case of a bulk odd-frequency supercon-
ductor, an even-frequency component of the pair amplitude
is induced at the interface. An important application of
these results is the existence of Josephson coupling be-
tween bulk odd- and even-frequency superconductors to
the lowest order in transmission coefficient 7,. The result-
ing current-phase relation is proportional to cos¢, in con-
trast to the conventional sing dependence.

In the following analysis, we consider an N/S junction
as the simplest example of a nonuniform superconducting
system without impurity scattering. Both the ESE and ETO
states are considered in the superconductor. As regards the
spin-triplet superconductor, we choose S, = 0 for simplic-
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ity. We assume a thin insulating barrier located at the N/S
interface (x = 0) with N (x < 0) and S (x > 0) modeled by
delta function H&(x), where H is the magnitude of the
strength of the delta function potential. The reflection
coefficient of the junction for the quasiparticle for injection
angle 6 is given by R = Z%/(Z* + 4cos*0) = 1 — T,, with
Z = 2H /v, where 6 (— 7w/2 <6 < 1/2) is measured
from the normal to the interface and vy is the Fermi
velocity. The quasiclassical Green’s function in a super-
conductor is parametrized in terms of

Go=fiati+ foutytgets, A =1 (D

with Pauli matrices #; (i = 1-3) and unit matrix 1. Here,
the index + ( — ) denotes left- (right-)going quasiparticles
[9]. It is possible to express the above anomalous Green’s
function as

+i(F+ + D)

fli:il—DiFi ,

D+ - F+
= 2
fax 1= D.F. (2
where D and F . satisfy the Eilenberger equations in the
Riccatti parametrization [10]

UpdDe = —AL(x)(1 — D%) + 20,D+,  (3)

vp 0 Fe = —AL()(1 = F2) = 20,F., (4

where v, is the x component of the Fermi velocity, w, =
27T (n + %) is the Matsubara frequency, with temperature
T. A, (x) [A_(x)] is the effective pair potential for left-
going (right-going) quasiparticles. Since the interface is
flat, F. = —RD+ holds at x = 0 [10]. Here we consider
the situation without mixing different symmetry channels
for the pair potential. Then

AL(x) = AD.L(0)O) ()

is satisfied with form factor ®.(6) given by 1, cos26,
*sin26, * cosf, and sinf for s, dxz_yz, dyy, py, and
py-wave superconductors, respectively. The condition in
the bulk is A(c0) = A. Since pair potential A (x) is a real
number, the resulting f; . is an imaginary number and f>+
is a real number.

In the subsequent analysis, we explicitly write f;+ =
fi+(w,, 6) and f,+ = fr+(w,, 6). For x = co, we obtain
fi+(@,, 0) =0 and fre(w,, 0) = AD.(0)/

\/w% + A?®2% (6.). Note that f,+(w,, ) becomes finite
due to the spatial variation of the pair potential and does
not exist as the bulk. It follows from Egs. (2)-(4)
that fi-(®, 0) = —f1-(-w, 0) and fr.(w, 0) =
fr+(—w,, ) for any x. It is remarkable that functions
fi1<(w,, 0) and f,.(w,, 6) represent, respectively, odd-
and even-frequency components of the pair amplitude [7].

Next, we discuss the parity of these pair amplitudes. For
an even-parity superconductor @ (—0) = O+ () while
d.(—0) = —®(0) for an odd-parity one. It follows
from Egs. (2)—(5) that f,+(w,, ) = —f=(w,, —0) and
foe(w,, 0) = frz(w,, —0) for an even-parity supercon-

ductor, and that f,~(w,, 0)= f=(w, —0) and
fo+(w,, ) = — fr2(w,, —0) for an odd-parity supercon-
ductor. Note that the parity of the odd-frequency compo-
nent f,+(w,, #) is different from that of the bulk
superconductor for all cases.

Let us now focus on the values of the pair amplitudes at
interface x = 0. We concentrate on two extreme cases with
1) P,.(0) = P_(0)and 2) P (0) = —P_(0). In the first
case, the midgap Andreev resonant state (MARS) is absent
since there is no sign change of the pair potential felt by the
quasiparticle at the interface. On the other hand, in the
second case, MARS is generated near the interface due to
the sign change of the pair potential [11]. It is easy to
show that f;+ = *i(1 —R)D, /(1 + RD%) and f,+ =
(1+RD,/(1+RD%) for case 1 and f;+ =i(l+
R)D,/(1 - RD%) and f,. = *(1 —R)D,/(1 - RD?)
for case 2. In the low-transparency limit with 7, — 0 (R —
1), only f,- is nonzero for case 1 and f/. is nonzero for
case 2. The remarkable fact is that, in the presence of a sign
change of the pair potential, only the odd-frequency pair
amplitude exists at the interface for 7,, — 0. In general,
f1+ 1s pure imaginary and f,- is areal number, so there is a
*+47/2 phase shift from interface-induced state.

We next illustrate these results by numerical calcula-
tions. We determine the spatial dependence of the pair
potential self-consistently [12]. As typical examples, we
choose s-wave and p,-wave pair potentials. In order to
understand the angular dependence of the pair amplitude in
more detail, we define f, and 7, for —m/2 < 0 < 3m/2
with fAl(z) = f1(2)+(0) for _77/2 <o< 77/2 and fAl(z) =
fia)- (7 — 0) for w/2 <6 <37/2. We decompose fl(z)
into various angular momentum components in the actual
calculation. Here, we focus on the lowest angular momen-
tum component. Figure 1 shows E(x) and E,(x), which
are s- and p,-wave components of the even-frequency pair
amplitude and the corresponding odd-frequency compo-
nents O,(x), 0,,(x) for iw, = iwT at T = 0.05T¢. T¢ is
the transition temperature of the superconductor. As can be
seen from Fig. 1(a), in the s-wave case the pair potential is
suppressed only in the high-transparency regime (Z = 0),
then odd-frequency component O, (x) is enhanced near
the interface where pair potential A(x) is suppressed. For a
low-transparency junction, the magnitude of O, (x) is
negligible. Note that for the p, wave, the magnitude of
O,(x) is enhanced near the interface, while E,(x) is sup-
pressed [see Fig. 1(b)]. For a low-transparency junction
where MARS is prominent, the magnitude of O,(x) be-
comes much larger than the magnitude of E,,(x). The
remarkable fact is that the MARS can be reinterpreted as
the manifestation of the odd-frequency pair amplitude at
the interface.

We next extend the foregoing discussion regarding
Egs. (1)—(5) to the case of bulk odd-frequency pairing in
a superconductor. In this case, A.(x) depends on
a Matsubara frequency A.(x) =A.(x, w,), with
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TABLE I. Relationship between the symmetry of the bulk
superconductor and that of the pair amplitude at the interface
in the low-transparency limit. The allowed symmetry of the
Cooper pair is even-frequency spin-singlet even-parity (ESE),
even-frequency spin-triplet odd-parity (ETO), odd-frequency
spin-singlet odd-parity (OSO), and odd-frequency spin-triplet
even-parity (OTE).
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FIG. 1. Spatial dependence of the normalized pair potential
(solid line), even-frequency pair amplitudes E (x) and E,,(x)
(dotted lines) and odd-frequency pair amplitudes O (x) and
0,,(x) (dashed lines). (a) s-wave bulk state, full-transparency
junction with Z=0; (b) ETO p,-wave bulk state, low-
transparency junction with Z = 5. Distance x is normalized by

& =wvp/A.

A.(x, w,) = —A.(x, —w,). One can show that f,. (f+)
becomes an odd-frequency (even-frequency) pair ampli-
tude. In this case, the interface-induced state is an even-
frequency state. Thus, an ETO (ESE) pairing state is
induced at the interface for the OTE (OSO) bulk supercon-
ductor. Since the pair potential A (x) is an imaginary
number, the resulting f;. is a real number and f,. is an
imaginary number. In the low-transparency limit, only the
odd-frequency state exists at the interface when the sign
change of the pair potential is absent. On the other hand, in
the presence of the sign change, only an even-frequency
state can be realized.

To summarize the above results, we present the relation-
ship between the pair amplitude symmetry in the bulk
superconductor and at the interface for 7,, — O (free sur-
face). As shown in the Table I, there are eight distinct cases
which correspond to different combinations of the bulk
pairing symmetry and the behavior of the orbital part of the
bulk pair potential with respect to reflection from the inter-
face. The pairing symmetry in the diffusive normal metal
(DN) attached to the superconductor is also shown. As
discussed in Ref. [8], only an s-wave even-parity state is
possible in the DN. Therefore, when the pair amplitude at
the interface has even parity, it can penetrate into DN.
However, the odd-parity pair amplitude cannot penetrate
into DN. This explains the absence of the proximity effect
in the case of the spin-singlet d,,-wave pair potential and
its presence in the case of the spin-triplet p,-wave pair
potential [13] as illustrated in Table I, lines 2 and 4.

Let us discuss the Josephson current between even-
frequency (x <0) and odd-frequency superconductors
(x > 0) to the lowest order in the transmission coefficient
T,,, assuming that spin-flip scattering at the interface is
absent. One can calculate the pair amplitude for an S/N
system with S (x <0) and N (x > 0) by the method de-
scribed above. We denote the values of the pair amplitudes
at the interface as f;, f,; for the left side and f g, f,r for

Bulk state Sign change Interface = DN
1 ESE(sord. ,» wave) No ESE ESE
2 ESE (d,, wave) Yes OSO No
3 ETO (p, wave) No ETO No
4 ETO (p, wave) Yes OTE OTE
5 OSO (p, wave) No 0OSO No
6 0OSO (p, wave) Yes ESE ESE
7 OTE (s or do_,» wave) No OTE OTE
8 OTE (d,, wave) Yes ETO No

the right side, in the limit 7,, — 0. Here, f;, f,x are odd-
frequency components and f g, fo; are even-frequency
ones. In the presence of a sign change of the pair potential
at the interface of the left- (right-)side superconductor, the
relations f5; = 0 and f.g) # 0 hold, while in the
absence of the sign change of the pair potential, f, &) =
0 and f5/g) # 0. The resulting Josephson current in a
superconductor/insulator/superconductor (S/1/S) junction
can be represented in the form

Ryl(g) = 2T S {1)sing + (L)cosg}  (6)

w, O

with I} = fipfir + forfor and I, = fipfor = firfor, as
follows from the boundary condition for the quasiclassical

Green’s function [14]. The suffix o denotes the direction of
the spin. Here Ry and ¢ are the resistance of the junction
and the macroscopic phase difference between two super-
conductors. In Eq. (6), the brackets {...) denote averaging
over the injection angle 6

(I(0)) = f i’

2 /2
do cosHIl(z)(ﬁ)Tm/f d0 cosOT,,
/2 —m/2

)

According to Table I, there are 16 possible combinations
of pairing symmetries in two superconductors. Since the
spin structure of Cooper pairs between the left and the right
superconductor are different, I(¢) = 0 for the following
combinations: 1-7, 1-8, 2-7, 2-8, 3-5, 3-6, 4-5, and 4-6.
Also, since the odd- and even-frequency pairing states are
realized on both sides of the interface, I(¢) = 0 for the
combinations: 1-5, 2-6, 3-7, and 4-8. This result is consis-
tent with the previous prediction [2]. The remaining four
combinations 1-6, 2-5, 3-8, and 4-7 are worthy of mention.
In this case, due to the sign change of the pair potential
realized on either the left side or right side at the interface,
then the respective pairing symmetry on both sides of the
interface is the same, ESE, OSO, ETO, and OTE, as can be
seen from Table 1. The resulting current-phase relation
I(¢) is proportional to cos¢. This unusual ¢ dependence
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TABLE II. Possible Josephson coupling.
Type of coupling Interface S/1/S S/DN/S
1 ESE/OSO ESE Yes Yes
2 ESE/OSO 0SSO Yes No
3 ETO/OTE ETO Yes No
4 ETO/OTE OTE Yes Yes

is relevant to the formation of the broken time reversal
symmetry state (BTRSS). It is natural to expect that when
the left and the right pair potentials have different parity
with respect to the frequency dependence, the BTRSS is
formed at this junction. The unusual cos¢ current-phase
relation stems from the fact that functions f,;, f;z have
+47/2 phase shifts from bulk functions f5; or f,g. Since a
macroscopic phase difference ¢ is defined by the phase
difference between the bulk functions in the left and right
superconductors, the resulting current-phase relation devi-
ates from conventional sing. The combinations corre-
sponding to nonvanishing Josephson coupling are shown
in Table II. If a diffusive normal metal (DN) is placed
between the two superconductors, the Josephson current is
absent due to impurity scattering, when the interface state
has an odd parity.

These results can be applied to actual materials. Fuseya
et al. have predicted that the OSO state could be realized in
CeCu,Si, and CeRhlns [6]. This is consistent with some
experiments [15]. We propose a robust check of pairing
symmetry by using the Josephson effect between ESE
(spin-singlet s-wave) and OSO superconductors. Here, an
ESE superconductor is attached to opposite (parallel) sides
of an OSO sample (see Fig. 2). It follows from the above
discussion that the induced ESE state of the pair amplitude
of the OSO superconductor at the left-side interface and
right-side interface have different signs. This additional
sign compensates the odd parity of the OSO superconduc-
tor, although the ESE state mixes locally near the interface.
Then the structure behaves as a 7 junction. The detection
of a 7 shift would thus be an unambiguous signature of
OSO pairing symmetry, similar to the phase-sensitive tests
of d-wave symmetry in high-T, cuprates [16].

In summary, we have predicted the lowest-order
Josephson coupling between even- and odd-frequency
superconductors. Although both superconductors do not
break the time reversal symmetry, the resulting current-

cosy cosy
) -
ESE ESE
ESE <
fir Sir
0SSO

FIG. 2. Schematic illustration of 7-SQUID made of ESE and
OSO superconductor junctions. fi; = —fz.

phase relation is cos¢. The underlying physics involves the
odd- (even-)frequency pairing state being generated near
the interface of the even- (odd-)frequency superconductor.
To restore the time reversal invariance in each supercon-
ductor, the phase of the interface-induced pair amplitude
undergoes a 7r/2 shift from that of the bulk one.
Although we only explicitly studied the N/S junctions,
the odd-frequency pairing state can also be expected near
impurities and within the Abrikosov vortex cores in even-
frequency superconductors. This implies that an odd-
frequency pairing is not at all an exceptional phenomenon
as was previously believed but plays a pivotal role in
understanding the physics of a nonuniform superconduct-

ing system.
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Note added.—After submission of this Letter, we be-
came aware of a reprint by Eschrig [17], who reached
similar conclusions about the mixing of even- and odd-
frequency pairing states in nonuniform superconductors.
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