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We show that the Majorana fermion zero modes in the cores of odd winding number vortices of a 2D
(px � ipy)-paired superconductor is due to an index theorem. This theorem is analogous to that proven by
Jackiw and Rebbi for the existence of localized Dirac fermion zero modes on the mass domain walls of a
1D Dirac theory. The important difference is that, in our case, the theorem is proven for a two component
fermion field theory where the first and second components are related by parity reversal and Hermitian
conjugation.
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The odd winding number vortices in a spinless (spin-
polarized) (px � ipy)-paired superconductor or superfluid
trap zero-energy bound states in the cores [1–5]. These
excitations are created by Majorana fermion operators and
endow the vortices with non-Abelian statistics [5–7]. It has
been proposed that braiding of such non-Abelian vortices
can be exploited to build a quantum computer that is
immune to environmental errors [6,8–10]. The Pfaffian
� � 5

2 fractional quantum Hall state [5,11] is a spinless
px � ipy superconductor of the ‘‘composite fermions’’ [5].
Currently there is an ongoing effort to demonstrate the
non-Abelian statistics of quasiparticles [12] in such a state.

Zero-energy modes were first proposed to exist in the
vortex cores of the (px � ipy)-paired superfluid A phase of
3He in Ref. [1]. Later, Volovik demonstrated the existence
of these modes by analyzing the quasiparticle trajectories
at the vortex cores in Refs. [2– 4]. At this point, it is
important to distinguish between two different approaches
to fermion zero modes at the vortex cores: the ‘‘approxi-
mate’’ or quasiclassical zero modes and the ‘‘exact’’ zero
modes. In the former, the discreteness of the energy spec-
trum in the vortex core is ignored, and in the corresponding
index theorem the vortex winding number is shown to be
equal to the number of quasiparticle branches which cross
zero energy as a function of angular momentum L (which
is treated as a continuous number) [2,4]. Subsequently, this
was also extended to configurations with many vortices
with tunneling between the vortex quasiparticles [13]. For
the ‘‘exact’’ zero modes, where the discreteness of the
energy spectrum at the vortex core is properly taken into
account, an index theorem for the odd winding number
vortices was proven in Ref. [3] (see also Ref. [4] for the
formulation in terms of W parity). Recently a number of
works also demonstrated the vortex zero modes by explic-
itly solving the Bogoliubov–de Gennes equations
[5,10,14,15] under special choice of the order parameter
profile. For even winding number vortices, there is no such
zero-energy mode [15]. In this Letter, we will focus on the

case where the discreteness of the energy spectrum and
both the odd and the even winding number vortices are
together taken into account. In addition, our work allows us
to establish a link between the vortex zero mode and the
zero mode associated with the mass soliton in the one
dimensional Dirac equation [16,17], or the domain wall
in polyacetylene [18,19].

The Jackiw and Rebbi soliton solution is a simple ex-
ample of an index theorem where fermionic zero modes
can be used to count the topological defects (or magnetic
flux quanta) of a background order parameter (or magnetic
field). Quite satisfactorily, this elegant mathematical result
was realized in polyacetylene as this one dimensional
polymer was doped with charges [18]. In this Letter, we
ask what the analogous index theorem is for the vortex
Majorana fermion zero modes of a px � ipy superconduc-
tor. We proceed by mapping the 2D vortex problem on an
effective 1D problem by performing angular momentum
decomposition with respect to the center of the vortex. In
this way, we can show that for odd winding number vor-
tices there exists a unique angular momentum channel in
which the following Hamiltonian describes the low energy
quasiparticle excitations:

 HM �
Z
dx��ivF�y�z@x��m�x��y�x��: (1)

In Eq. (1), m��x� � �m�x� is a spatially varying mass
term that changes sign at x � 0 (the location of the domain
wall), and �y�x� is a two component field given by
�cy�x�; c��x� with c�x� being a spinless fermion field.
Note the important difference of Eq. (1) with the Dirac
theory,

 HD �
Z
dx��ivF y�z@x �m�x� y�x �; (2)

where  y�x� � �fy1 �x�; f
y
2 �x�� with f1;2�x� being two inde-

pendent fermion fields. Because of this difference, the
zero-energy quasiparticles localized on the mass domain
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walls of Eq. (1) are Majorana fermions, while those local-
ized on the domain walls of Eq. (2) are ordinary fermions.
As we will show later, for even winding number vortices,
such angular momentum channel does not exist.

We first briefly review the derivation of the Jackiw-
Rebbi zero mode for Eq. (2). The quasiparticle operator

 qy �
Z
dx��1�x�f

y
1 �x� ��2�x�f

y
2 �x��

satisfies �H; qy� � �qy. That implies the following Dirac
equation for the two component wave function �T�x� �
��1�x�; �2�x��:

 � ivF�z@x��x� � �xm�x���x� � ���x�: (3)

First we note that because �y anticommutes with �x and
�z, if ��x� is an eigenfunction with eigenvalue �, �y��x�
is also an eigenfunction with eigenvalue ��. As a result,
the � � 0 solutions of Eq. (3) can be made a simultaneous
eigenstate of �y. Let �0�x� denote such a solution and
�y�0�x� � ��0�x�. Set � � 0 and left-multiplying Eq. (3)
by i�z we obtain

 @x�0�x� �
�
vF
m�x��0�x�;

which implies

 �0�x� � e��=vF�
R
x

0
m�y�dy�0�0�: (4)

For m�x� � �sgn�x�jm�x�j, Eq. (4) is normalizable for
� � 	1. In this way we have proven that for each sign
change of m�x� there is a single zero-energy mode.

Now let us consider a uniform (i.e., with no vortices) 2D
px � ipy superconductor. The fermionic mean-field
Hamiltonian is given by K �H0P, where

 K�
X
k

�kc
y
kck; H0P���0

X
k

�kx� iky�c
y
kc
y
�k�H:c:

(5)

Here K is the kinetic energy term, H0P is the pairing term,
and �k � k2=2m� �F with �F the Fermi energy.

With the purpose of treating the electronic state of a
single vortex in mind, we change to a new representation
where the fermion operators are expanded in angular mo-
mentum channels,

 ck �
1���������
2�k
p

X1
m��1

cm;ke
im	k ;

with m an integer. The commutation relation fck; c
y
pg �


2�k� p� implies

 fcmk; c
y
npg � 
m;n
�k� p�:

Inserting them in Eq. (5), doing the 	k integral, and lin-
earizing �k around kF, we get,

 K �
1

�2��2
X
m

Z �

��
dq�vFq�c

y
m;qcm;q; (6)

where q � k� kF, vF is the Fermi velocity, and � is a
momentum cutoff. So the kinetic energy term separates
into uncoupled angular momentum channels indexed by
the integer angular momentum m. Using similar manipu-
lations to decompose the pairing term, we find, using
	�k � �� 	k and kx � iky � jkjei	k ,

 H0P �
�0kF
2�2

X
m

Z �

��
dq cos�m��cym;qc

y
1�m;q � H:c: (7)

Putting Eqs. (6) and (7) together we have, for each pair of
m and 1�m, the following massive Dirac theory:

 Hm �
Z
dx��iv0F 

y
m�z@x m �m0 

y
m�x m�:

Intheabove,  ym�x� istheFourier transform of (cym;q; c1�m;q),
v0F � vF=4�2 and m0 � kF�0 cos�m��=2�2. Conse-
quently, all fermionic quasiparticle excitations are gapped.

Next we consider the fermionic Hamiltonian for a single
winding number vortex located at the origin. The kinetic
energy part of the Hamiltonian remains the same as in
Eq. (6). Let us now consider the pairing term. In order to
describe the spatial dependence of the superconducting
order parameter, we start with the real space description,

 H1P � ��0

Z
d2R

Z
d2rei	Rh�R�g�r�cyR�rc

y
R�r � H:c:

(8)

Here, R and r are the center of mass and the relative
coordinates of the Cooper pair, respectively. h�R� and 	R
are the amplitude and the phase of the superconducting
order parameter, and g�r� is the Fourier transform of (px �
ipy). In the vortex core, h�R� 
 �1� e��R=��� with � the
coherence length. Substituting cyR�r � 2�

P
kc
y
ke

ik��R�r�

in Eq. (8), we end up with two spatial integrals, g�k�
p� �

R
d2rg�r�ei�k�p��r � �kx � px� � i�ky � py� and

 I�k� p� �
Z
d2Rei	Rh�R�ei�k�p��R: (9)

In order to evaluate I�k� p�, we first note that I�R	�k�
p�� � ei	I�k� p�, where R	 is the operator that rotates
(k� p) by an angle 	 in the momentum space. It fol-
lows that I�k� p� � ei	k�pI�jk� pj�. This can also be
seen by writing out the full integral in Eq. (9) asR
�
�� d	R

R
RdRei	Rh�R�ei�k�p�R cos�	R�	k�p� and making

the substitution 	R ! 	0R � 	k�p. To evaluate I�jk� pj�
we choose (k� p) along the y axis. Performing the 	R
integral which produces�2�iJ�1�jk� pjR�, where J�1 is
the Bessel function of the first kind of order �1 [20], and
then performing the R integral which produces
��2��3i=jk� pj2� �O�1�, we find

 H1P���2��
3i�0

X
k;p

�kx� iky�2��px� ipy�2

jk�pj3
cykc

y
p�H:c:

Finally, using angular momentum expansion of the fermion
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operators and noting that a function of jk� pj is periodic
in (	k � 	p) and hence can be Fourier expanded as

 

1

jk� pj3
�
X
m

um�k; p�e
�im�	k�	p�;

we rewrite H1P as
 

H1P � ��2��2i�0

X
k;p

X
m;m1;m2

�
k2ei2	k � p2ei2	p������

kp
p

�
um�k; p�

� e�i�m1�m�	ke�i�m2�m�	pcym1k
cym2p � H:c: (10)

Performing the 	k and 	p integrals in Eq. (9) for the two
different terms, we get the conditions m1 � 2�m, m2 �
m andm1 � �m,m2 � 2�m, respectively. Since 1=jk�
pj3 depends on cos�	k � 	p�, and hence is even in (	k �

	p), um�k; p� � u�m�k; p�. In addition, since 1=jk� pj3 is
symmetric in the k$ p exchange, um�k; p� � um�p; k�.
Using these, we perform the transformation m! �m and
interchange k and p in the second term of Eq. (9) to arrive
at the simple form for the pairing term:

 H1P��2i�0

X
m

Z
dkdpk2

������
kp

p
um�k;p�c

y
2�m;kc

y
m;p�H:c:

(11)

In the above pairing Hamiltonian, each angular momen-
tum channel m is coupled to channel (2�m). The only
exception is the channel m � 1 which is decoupled from
the rest. In this channel, writing k � kF � q and p � kF �
q0 for small q and q0, and noting that the coefficient of
cy1;qc

y
1;q0 must be odd in (q� q0) from the fermion anti-

commutation relation (otherwise, the integrals over q and
q0 in the pairing term below will give zero since the
fermion bilinear changes sign under q$ q0), the
Hamiltonian for the m � 1 channel takes the form
 

H1 �
1

�2��2
Z �

��
dqvFqc

y
1;qc1;q

� i�0

Z �

��
dqdq0A�q� q0�cy1;qc

y
1;q0 � H:c:; (12)

where A�q� q0� is an odd function of (q� q0), which, in
leading order, we find to be 
k2

Fu1�kF; kF��q� q0�. De-
fining a two component fermion operator �yq � �c

y
1;q; c1;q�,

H1 becomes Eq. (1) where �y�x� � �cy�x�; c��x�� is the
Fourier transform of �q and m�x� is the Fourier transform
of i�0A�q�. Because of the odd nature of A�q�, the mass
term satisfies m��x� � �m�x�.

Now we prove the index theorem for Eq. (1). By writing
the quasiparticle operator as

 �y �
Z
dx��1�x��

y
1 �x� � �2�x��

y
2 �x��;

where �y1 �x� � cy�x� and �y2 �x� � c��x� and demanding
that �H;�y� � ��y, we obtain the following equation for
�T�x� � ��1�x�; �2�x��:

 � ivF�z@x��x� �m�x��x��x� �
�
2
��x�: (13)

The rest of the proof for the zero mode is identical to that in
the Dirac fermion case. To see that the zero-energy quasi-
particle is a Majorana fermion we recall that the zero-
energy solution of Eq. (11) is an eigenstate of �y.
Explicitly it takes the form

 ��x� � e��=vF�
R
x

0
m�y�dy e

i�=4���
2
p

1
�i

� �
:

Here we have chosen a particular global phase for the �y
eigenvector. Like the Dirac fermion zero modes, the value
of � here is �1 when the mass profile satisfies m�x� �
	sgn�x�jm�x�j. The corresponding quasiparticle operator
takes the form

 �y �
1

N

Z
dxe��=vF�

R
x

0
m�y�dy e

i�=4���
2
p �cy1 �x� � ic1��x��;

(14)

where N is a normalization factor. Since e��=vF�
R
x

0
m�y�dy is

an even function of x [since m�x� is an odd function], one
can easily verify that �y � �, i.e., the quasiparticle is a
Majorana fermion.

In angular momentum channels other than m � 1, chan-
nel m is coupled to channel (2�m). For these channels,
the Hamiltonian is of the form

 Hm �
1

�2��2
Z �

��
dqvFq�c

y
mqcmq � c

y
2�mqc2�mq�

� i�0

Z �

��
dqdq0B�q; q0�cymqc

y
2�mq0 � H:c:

In this case there is no requirement that B�q; q0� has to
change sign upon q$ q0 since the fermion operators in the
pairing term are from two different angular momentum
channels. Thus, generically, B�0; 0� is nonzero, and the
spectrum is gapped. In this case the real space Hamilton-
ian resembles Eq. (2) with  y�x� the Fourier transform of
(cmq; c

y
2�mq), and the mass term does not change sign.

Hence, there is exactly one zero mode in the spectrum.
For the system with a winding number two vortex, the

factor ei	R in Eq. (8) is replaced by e2i	R . This simple
modification, as we show below, gets rid of the uncoupled
angular momentum channel. Consequently, like the m � 1
angular momentum channels in the winding number one
vortex discussed above, the real space Hamiltonian is of
the form in Eq. (2) where the mass term does not change
sign. Therefore the Jackiw-Rebbi theorem does not apply
and there is no zero-energy mode in the spectrum.

With the modification ei	R ! e2i	R , the function I�k�
p� in Eq. (9) now satisfies I�R	�k� p�� � e2i	I�k� p�. It
follows that I�k� p� � e2i	k�pI�jk� pj�. Doing similar
calculation as earlier we obtain
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H2P � ��2��2�0

X
k;p

r�k; p; 	k; 	p�������
kp
p

�
X

m;m1;m2

vm�k; p�e
�i�m1�m�	k

� e�i�m2�m�	pcym1k
cym2p � H:c:;

where r�k; p; 	k; 	p� � �k3e3i	k � k2pe2i	kei	p �

p2ke2i	pei	k � p3e3i	p�, and vm�k; p� is the Fourier com-
ponent of 1=jk� pj4. Finally, performing the 	k and 	p

integrals, and transforming m! �m along with inter-
changing k and p in the third and fourth terms of H2P,
we arrive at the equation analogous to Eq. (11):

 H2P � 2�0

X
m

Z
dkdp�k3 � k2p�

������
kp

p
vm�k; p�c

y
3�mkc

y
mp

� H:c:

It is clear from this equation that, in the case of the vortex
with winding number two, no angular momentum channel
in the pairing term decouples from the rest.

We can generalize the above calculations to the cases of
arbitrary odd and even winding number vortices. For a
vortex with an odd winding number, 2n� 1, because of
the factor ei�2n�1�	R in the pairing term, angular momentum
channel m is coupled to channel (2n�m). In this case,
there is always a channel, m � n, which is decoupled from
the rest. In this channel, quite generally, the Hamiltonian
maps on Eq. (1) with a mass term which is an odd function
simply because of the fermion anticommutation relation.
The index theorem we proved in this Letter then implies
the existence of a zero-energy Majorana fermion quasipar-
ticle. In contrast, for a vortex with an even winding number
2n, angular momentum channel m is coupled to channel
(2n� 1�m) by the pairing term. Consequently, like in
the case of the vortex with winding number two, there is no
decoupled angular momentum channel and there is no zero
mode. Note that in the physics discussed above the break-
ing of time reversal symmetry is crucial, since, for 2D
nonchiral p-wave superconductors, the bulk itself is
gapless.

For s-wave superconductors, pairing occurs between the
fermions with opposite spins. In this case, for a vortex with
winding number one, one can show that the pairing term
couples angular momentam and 1�m, like in the uniform
case discussed above. So there is no isolated channel. For a
vortex with winding number two, the channel m � 1 de-
couples, and the Hamiltonian in this channel takes the form

 H2 �
1

�2��2
X
�

Z �

��
dqvFqc

y
1q�c1q�

��0

Z �

��
dqdq0C�q; q0�cy1q"c

y
1;q0# � H:c: (15)

However, in Eq. (13), because of the opposite spins of the

fermions in the pairing term, the anticommutation relations
fail to produce an odd mass term. Thus, there is no zero
mode at the vortices of an s-wave superconductor [21].
Similar arguments apply in the case of other singlet pair-
ings and there is no zero mode at the vortex cores.

To conclude, we have proven an index theorem for the
existence of zero modes in the vortex cores of chiral
p-wave superconductors. The formalism also correctly
captures the low energy quasiparticle physics at the vortex
cores of s-wave superconductors. The index theorem pro-
vides the physics of the zero modes with robustness mak-
ing it insensitive to small perturbations. This robustness is
also shown in Ref. [22] by a different method.
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