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Quantum control of the wave function of two interacting electrons confined in quasi-one-dimensional
double-well semiconductor structures is demonstrated. The control strategies are based on the knowledge
of the energy spectrum as a function of an external uniform electric field. When two low-lying levels have
an avoided crossing, our system behaves dynamically to a large extent as a two-level system. This
characteristic is exploited to implement coherent control strategies based on slow (adiabatic passage) and
rapid (diabatic Landau-Zener transition) changes of the external field. We apply this method to reach
desired target states that lie far in the spectrum from the initial state.
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The control of quantum systems is a fundamental chal-
lenge in physical chemistry, nanoscience, and quantum
information processing [1,2]. Quantum control is the ma-
nipulation of the temporal evolution of a system in order to
obtain a desired target state or value of a certain physical
observable. From the experimental point of view, the tech-
niques of quantum control are highly developed in the area
of magnetic resonance, and more recently great progress
has been made in quantum chemistry thanks to the devel-
opment of ultrafast laser pulses [3].

Coherent control in semiconductor quantum dots has
become an active field of research in the past 15 years.
Early works on electron localization in double-well sys-
tems spurred intense theoretical activity. In a seminal
Letter, Grossmann et al. [4] showed that, by applying an
appropriate ac electric field, the tunneling of the electron
between the wells could be coherently destroyed, thereby
maintaining an existing localization in one of the wells.
Shortly after, Bavli and Metiu [5] found ways to, starting
from the delocalized ground state, localize the electron
wave function and then to preserve the localization with
a precisely tailored time-dependent electric field. A large
body of literature followed these pioneering works. A
decade later, the first steps in the theoretical exploration
of localization and control of two interacting electrons in
quantum dots were made [6–8]. Whereas Zhang and Zhao
studied a model two-level system, Tamborenea and Metiu
studied a more realistic multilevel system inspired by
quasi-one-dimensional semiconductor nanorods. The
study of two-electron localization and control in double
dots has remained active ever since [9–13].

In this Letter, we propose an efficient method to control
the wave function of two interacting electrons confined in
quasi-one-dimensional nanorods [8,14]. The control
method is based on the knowledge of the energy spectrum
as a function of an external uniform electric field. The
method requires that the system behaves locally—near
avoided level crossings—as the Landau-Zener (LZ) two-

level model [15]. This fact is exploited to navigate the
spectrum using slow (adiabatic) and rapid (diabatic)
changes of the external control parameter. Although this
characteristic may seem rather restrictive, it is, in fact, a
general property of systems with interaction between its
energy levels. The level repulsion must not be too strong,
though, so that the spacing at the avoided crossings re-
mains smaller than the mean level spacing.

Let us consider a quasi-one-dimensional double quan-
tum dot with two interacting electrons in it in the presence
of a spatially uniform electric field [8]. Denoting by z the
longitudinal coordinate, the Hamiltonian of the two elec-
trons reads
 

H � �
@

2

2m

�
@2

@z2
1

�
@2

@z2
2

�
� V�z1� � V�z2�

� VC�jz1 � z2j� � e�z1 � z2�E�t�; (1)

where m is the effective electron mass in the semiconduc-
tor material, VC is the Coulomb interaction between the
electrons, V is the confining potential, and E�t� is an
external time-dependent electric field. The confining po-
tential is a double quantum well with a well width of 28 nm
and an interwell barrier of 4 nm and is 220 meV deep (a
typical depth for a GaAs-AlGaAs quantum well). We
mention that the control results that we report here are
robust with respect to the fine-tuning of the parameters of
the structure. We normally assume that the initial state is
the ground state, which is a singlet. Since the Hamiltonian
is spin-independent, the total spin is conserved, and the
spatial wave function remains symmetric under particle
exchange at all times.

We first consider the case of a constant electric field,
to be considered at this point as a parameter in the
Hamiltonian. In Fig. 1, we show the spectrum of eigene-
nergies of the Hamiltonian of Eq. (1) versus electric field.
The energies �i�E� and eigenstates �i�E; z1; z2� are ob-
tained by numerical diagonalization. We have used as a
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basis set the symmetric combinations of the 12 lowest
single-particle eigenfunctions. Thus, our basis of the two-
particle Hilbert space has 12��12� 1�=2 � 78 states. We
can see in Fig. 1 that the spectrum is composed of nearly
straight lines [16]. A closer look reveals that all level
crossings are avoided, giving rise to adiabatic curves that
never cross each other. The fact that all crossings are
avoided ones is due to the electron-electron interaction,
which couples the energy levels of the noninteracting
system [17].

The straight lines of the spectrum are distributed in three
clearly distinguishable groups: those with negative, zero,
and positive slope. In each group, the slopes are very
similar, and, far from the avoided crossings, the wave
functions have a distinct kind of localization, as follows
[see Figs. 1 and 2(a)–2(f)]: (i) For zero slope, the electrons
are delocalized, that is, each electron is in a different dot
[Figs. 2(a) and 2(b)]; (ii) for negative slopes, both electrons
are in the left dot [Figs. 2(c) and 2(d)]; and (iii) for positive
slopes, both electrons are in the right dot [Figs. 2(e) and
2(f)]. Along a given straight line, the eigenstates do not
change much; thus, each line has associated a character-
istic shape of the wave function. Near an avoided crossing,
states with different types of localization mix. These mixed
states do not have a well-defined localization type. As an
example, in Figs. 2(g) and 2(h) we show the eigenstates at
the avoided crossings between the first two levels at E �
4:81 kV=cm and between levels 21 and 22 at E �
8:48 kV=cm, respectively.

Our goal is to find a method to control the wave function.
The previous discussion about the spectrum and the char-
acteristics of the wave functions at and far from the
avoided crossings suggests a possible control strategy. For
example, starting at state (a) in Fig. 1 and varying slowly
(adiabatically) the electric field, we reach state (c), which
has a different type of localization (see Fig. 2). On the other
hand, if we vary the parameter E quickly, the final state will
have the same localization as the initial one (see below,

Fig. 3). These types of transitions will be the building
blocks of our control strategy. The exact meaning of slow
and fast in this context is given by the LZ model [15].

The LZ theory treats a rather simple and generic situ-
ation of a two-level avoided crossing. The LZ Hamiltonian
in the diabatic basis fj�i; j�ig is

 H �
"���� "
" "����

� �
; (2)

where " is a constant, while the diagonal "���� � E0 �
��� are linear functions of the parameter �. It is assumed
that the parameter � varies linearly with time. It can be
shown that the probability of remaining in state j�i is
given by P� � exp	�2�"2=@��� � ��� _�
, where _� is
the rate of variation of the parameter. Conversely, P� �
1� P�. By selecting the rate of change of the parameter �,
we can control the final state of the system. For slow
variations of � ( _�� "2=@), the system follows the adia-
batic curve passing from the initial diabatic state to the
other one. In the opposite case, when _�� "2=@, the evo-
lution takes place on the diabatic curve, and the state
remains as the initial one. It can be shown that near an
avoided crossing our system can be treated as a two-level
LZ model [18]. We compared the evolution of the two-
level LZ Hamiltonian [Eq. (2)] to that of the complete
Hamiltonian [Eq. (1)] for many rates of variation of the
parameter (electric field), and we found very close agree-
ment. The numerical solution of the time-dependent
Schrödinger equation was obtained using the usual
fourth-order Runge-Kutta method [6,8]. We use a time
step of 0.1 fs, which ensures that the precision of all of
the reported probabilities and overlaps is better than 0.4%.

The adiabatic transition from state (a) to (c) [see Figs. 1,
2(a), and 2(c)] is an extremely simple solution to the
problem of localization in a realistic double quantum dot

FIG. 2. Spatial wave functions �i�E; z1; z2� corresponding to
labels (a)–(h) in Fig. 1. States (a) and (b) have one electron in
each well, wave functions (c) and (d) are localized in the left
well, and wave functions (e) and (f) have both electrons in the
right well. States (a)–(f) are far from avoided crossings and
therefore have well-defined localization properties. This is not
the case for eigenstates (g) and (h), which are at avoided cross-
ings.

FIG. 1. Energy spectrum of our system as a function of the
external uniform electric field.
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[7–9]. In fact, more complex and interesting control prob-
lems can be tackled. Namely, by suitable combinations of
rapid (diabatic) and slow (adiabatic) changes of the electric
field, it is possible to travel over the spectrum connecting
distant pairs of states. That is, we can not only control the
distribution of electrons in the dots (localization and de-
localization) but we are also able to choose finer details of
the final state, such as, for example, its nodal domains.

We now show a complex navigation through the spec-
trum in which the system is taken from the ground state to a
specific high-energy state. In this case, the target is state (b)
in Fig. 2 (see also Fig. 1), which shares the localization
type with the ground state (they are both delocalized) but
has a more complex nodal structure. This process is de-
picted in Fig. 3. We want to reach the excited state by
means of diabatic and adiabatic transitions. The intended
navigation path is displayed with arrows in the spectrum of
Fig. 3(a). The small arrows indicate slow variations of the
control electric field whose objective is to follow the adia-
batic states (i.e., the eigenfunctions of the Hamiltonian at
the successive values of the electric field). The long arrows
denote diabatic transitions at the avoided crossings. Here
we use instantaneous jumps of the electric field, but we
have checked that rise times of the order of 0.1 ps do not
change significantly our results. The time dependence of
the electric field is shown in Fig. 3(b). In order to know in
detail how the evolution of the wave function proceeds, we
show in Figs. 3(c) and 3(d) different aspects of the time-
dependent wave function. In Fig. 3(c), we compute the
time-dependent localization probabilities PLL that the two
electrons are in the left well and PRL that they are in
different wells. Figure 3(d) gives the absolute value of

the overlap of the evolving state with the energy eigenstate
�i�E�, and Fig. 3(e) displays the spatial wave function at
the various times indicated in Fig. 3(d).

Let us discuss in detail the behavior of the evolving
wave function. We start from the ground state with zero
electric field and move adiabatically up to a field of
3:5 kV=cm, as shown in Fig. 3(a). This process takes
100 ps [see Fig. 3(b)]. Note in Fig. 3(d) that the overlap
with the adiabatic eigenstate �1 is approximately 1. After
that, the field is quickly increased [the first jump of the
electric field in Fig. 3(b), at t � 100 ps] so that the system
goes through the first avoided crossing. At this avoided
crossing, the overlap between the evolving state and the
adiabatic eigenstates begins to decay, from almost 1 to
close to 0.97. For example, at time t1 � 190 ps, the wave
function still resembles the ground state [see Fig. 3(e)]
but displays a degree of mixture with localized states,
as evidenced by the finite probability in the lower-left
quadrant. Afterwards, we move slowly until t3 � 300 ps,
passing adiabatically the second avoided crossing at E �
11:2 kV=cm. The mixed nature of the wave function at the
avoided crossing (at t2 � 243 ps) can be seen in Fig. 3(e).
After the crossing, at t3, the wave function is highly
localized on the left dot [see Fig. 3(e)]. At this point, we
still have ahead of us a long way to the desired final state,
most of it along a spectral ‘‘line’’ of negative slope.
Although it would be tempting to make a sudden change
of the control parameter to its final value, that strategy is
not satisfactory. It is best to proceed slowly far from the
avoided crossings and rapidly around them. This procedure
has the advantage of allowing our state to adjust to the
gradual changes of the adiabatic states in the regions

FIG. 3. (a) Schematic diagram of the
intended path followed by the state.
Short (long) arrows indicate slow (fast)
variations of the electric field. The initial
state is marked as � and the target state
as 
. (b) External electric field (the
control parameter) as a function of
time. (c) Probabilities that the two elec-
trons are in the same (left) well (PLL)
and in different wells (PRL). (d) Absolute
value of the overlap of the evolving state
with the energy eigenstate �i�E�.
(e) Spatial wave functions at various
times indicated in (d).
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between crossings. These gradual changes do not entail
changes in the type of localization but rather displacements
of the probability density within the quadrants which are
already populated. In the remainder of the path, we cross
three avoided crossings diabatically and the last one
slowly. The latter, being very narrow, turned out to be the
hardest one to pass adiabatically. This passage took 300 ps,
as seen in Fig. 3(b). In this avoided crossing, the wave
function goes from a strong localization in the left dot
[wave function at t4 in Fig. 3(e)] to a clear delocalization
in the final state. We remark that the overlap of the final
state with the desired state, at t6 � 800 ps, is 0.93 [see
Fig. 3(d)].

Before concluding, it is worth comparing the present
control method with others found in the literature. In
Ref. [8], a different localization scheme was proposed for
the system studied here. In that work, the electron local-
ization is obtained, starting from the ground state at zero
electric field, with a piecewise constant electric field. The
time scales involved, of a few picoseconds, which are
experimentally accessible, are the same in the two ap-
proaches. However, the present method has the advantage
of being more robust since it does not require the fine-
tuning of the field jumps, and, furthermore, it gives higher
probabilities of reaching the target state. Moreover, in
Ref. [8], the controlled state is a superposition of only
the two lowest-energy eigenstates, while in our proposed
method a much more general navigation of the spectrum is
naturally possible, allowing one to connect very distant
states. More recently, an efficient method of control was
proposed and applied to the creation of entangled states in
spin systems [19]. The method is based on the navigation
of the energy spectrum, expressed as a function of an
external control parameter, which is varied always adia-
batically. A key element of the controlled system of that
study is that the interaction, which controls the nature of
the level crossings, can be switched off at will. This addi-
tional control tool is clearly not generic. Here we propose a
control method based on similar general ideas but which is
more general in the sense that the interaction among levels
does not need to be controlled. Finally, we mention that
nonadiabatic LZ transitions have been applied to control
single-electron transport [20], and adiabatic passage has
been used to control localization and suppression of tun-
neling [21].

In summary, we have proposed an efficient method to
control the wave function of a two-electron quantum dot
system. This method is based on slow and fast variations of
a control parameter which in our study is given by an
external electric field that couples to the electrons through
the dipole Hamiltonian. The success of this method relies
on the condition that the interaction between neighboring
levels be well described by the two-level LZ model.
Although this may seem a severe limitation to the applica-
bility of the method, this condition is quite generally
satisfied. For example, it has been recently shown in the

paradigmatic stadium billiard that the transitions between
neighboring levels are of the LZ type when the billiard
boundary is deformed [22]. We have shown that with this
method an effective control of the wave function can be
achieved, even for rather ambitious control goals. While
the technology to produce the required ramped electric
fields, controllable in the picosecond time scale with
enough flexibility may not be currently available, we ex-
pect that our proposal will further motivate their experi-
mental development.
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