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The band structure of graphene ribbons with zigzag edges have two valleys well separated in
momentum space, related to the two Dirac points of the graphene spectrum. The propagating modes in
each valley contain a single chiral mode originating from a partially flat band at the band center. This
feature gives rise to a perfectly conducting channel in the disordered system, if the impurity scattering
does not connect the two valleys, i.e., for long-range impurity potentials. Ribbons with short-range
impurity potentials, however, through intervalley scattering display ordinary localization behavior. The
two regimes belong to different universality classes: unitary for long-range impurities and orthogonal for
short-range impurities.
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The recent fabrication of graphene devices, combined
with observation of half-integer quantum Hall effect [1]
and the intrinsic �-phase shift of the Shubnikov–de Haas
oscillations [2], has once more ignited an intense dis-
cussion on this old fascinating system. Because of the
two-dimensional honeycomb structure, the itinerant
�-electrons near the Fermi energy behave as massless
Dirac fermion. The valence and conduction bands touch
conically at two nonequivalent Dirac points, called K� and
K� points, which possess opposite chirality [3]. In gra-
phene, the presence of edges can have strong implications
for the spectrum of the�-electrons [4]. There are two basic
shapes of edges, armchair and zigzag which determine the
properties of graphene ribbons. In ribbons with zigzag
edges, localized states appear at the edge with energies
close to the Fermi level [4]. In contrast, edge states are
absent for ribbons with armchair edges. Recent experi-
ments give evidence for edge localized states [5]. The
electronic transport through zigzag ribbons shows a num-
ber of intriguing phenomena such as zero-conductance
Fano resonances [6], vacancy configuration dependent
transport [7], valley filtering [8], and half-metallic conduc-
tion [9].

The electron transport in 1-dimensional (1D) carbon
systems displays unusual properties, in apparent conflict
with the common belief that 1D systems are generally
subject to Anderson localization. Indeed it was demon-
strated that carbon nanotubes with long-ranged impurities
possess one perfectly conducting channel (PCC) [10]. In
this Letter, we focus on disorder effects of the electronic
transport properties of graphene zigzag ribbons. The edge
states play an important role here, since they appear as
special modes with partially flat bands and lead under
certain conditions to chiral modes. There is one such
mode of opposite orientation in each of the two valleys,
which are well separated in k space. The key result of this
study is that for disorder without intervalley scattering a
single PCC emerges associated with such a chiral mode.

This mode disappears as soon as intervalley scattering is
possible. This distinction depends on the range of the
impurity potentials. We will show that as a function of
the impurity potential range a crossover from the orthogo-
nal to the unitary universality class occurs which is con-
nected with the presence or absence of time-reversal
symmetry (TRS).

We describe the electronic states of nanographites by the
tight-binding model

 H �
X
i;j

�i;jjiihjj �
X
i

Vijiihij; (1)

where �i;j � �1 if i and j are nearest neighbors, and 0
otherwise. jii represents the state of the pz orbital on site i
neglecting the spin degrees of freedom. In the following,
we will also apply magnetic fields perpendicular to the
graphite plane which are incorporated via the Peierls
phase: �i;j ! �i;j exp�i2��e=ch�

Rj
i dl �A�, where A is

the vector potential. The second term in Eq. (1) represents
the impurity potential, Vi � V�ri� is the impurity potential
at a position ri.

As shown in Fig. 1(a), our zigzag ribbons are charac-
terized by the width N, the number of zigzag chains, and L
denotes the length of the disordered region. In Fig. 1(b), we
display the band structure for the zigzag ribbon with N �
10. Note that zigzag ribbons are metallic for all widths at
finite doping because of the presence of a partial flat band
at zero energy induced by edge states. These edge states
lead in the clean limit to the characteristic conductance
odd-number quantization, i.e., g � 2n� 1 as the dimen-
sionless conductance per spin (n � 0;	1;	2; . . . ) [6,11].
There are two valleys, at k	 � 	2�=3, each of which
possesses one excess mode which violates the balance
between the number left- and right-moving modes (Fig. 1).

In our model we assume that the impurities are randomly
distributed with a density nimp, and the potential has a
Gaussian form of range d
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 V�ri� �
X

r0�random�

u exp
�
�
jri � r0j

2

d2

�
; (2)

where the strength u is uniformly distributed within the
range juj 
 uM. Here uM satisfies the normalization con-
dition: uM

P�full space�
ri exp��r2

i =d
2�=�

���
3
p
=2� � u0. The

range of the impurity potential is crucial for the transport
properties. Since the momentum difference between two
valleys is rather large, �k � k� � k� � 4�=3a, only
short-range impurities (SRI) with a range smaller than
the lattice constant causes intervalley scattering. Long-
range impurities (LRI), in contrast, restrict the scattering
processes to intravalley scattering [12].

We briefly discuss here the relation between valleys in
the zigzag ribbons and graphene. The electronic states near
the Dirac point can be described by the k � p Hamiltonian

 Hk�p � ~��k̂x��x � �0� � k̂y��y � �z�� (3)

acting on the 4-component pseudospinor Bloch functions
� � ��K�A; �K�B;�K�A;�K�B�, which characterize the
wave functions on the two crystalline sublattices (A and
B) for the two Dirac points (valleys) K	. Here, ~� is the
band parameter, k̂x�k̂y� are wave number operators, and �0

is the 2� 2 identity matrix. Pauli matrices �x;y;z act on the
sublattice space (A, B), while �x;y;z on the valley space
(K	). Since the outermost sites along 1st (Nth) zigzag

chain are B(A)-sublattice, an imbalance between two sub-
lattices occurs at the zigzag edges leading to the boundary
conditions

 �K	A�r�0�� � 0; �K	B�r�N�1�� � 0; (4)

where r�i� stands for the coordinate at ith zigzag chain. It
can be shown that the valley near k � 3�=2a in Fig. 1(b)
originates from the K�-point, the other valley at k �
�3�=2a from K�-point [13].

In the graphene system, the pairs of time-reversed states
are formed across the two valleys (Dirac points). In the
absence of intervalley scattering for LRI, this ordinary TRS
becomes irrelevant, while the pseudo-time-reversal sym-
metry with respect to the operator T � �i��y � �0�C (C:
complex conjugation) appears, where the A-B sublattices
act as pseudospin. This corresponds to the time-reversal
operation restricted to each valley. The boundary condi-
tions which treat the two sublattices asymmetrically lead-
ing to edge states give rise to a single special mode in each
valley. Considering now one of the two valleys separately,
say the one around k � k�, we see that the pseudo-TRS is
violated in the sense that we find one more left-moving
than right-moving mode. Thus, as long as disorder pro-
motes only intravalley scattering, the system has no time-
reversal symmetry. On the other hand, if disorder yields
intervalley scattering, the pseudo-TRS disappears but the
ordinary TRS is relevant, making a complete set of pairs of
time-reversed modes across the two valleys. Thus, we
expect to see qualitative differences in the properties if
the range of the impurity potentials changes.

In order to demonstrate this we now turn to the discus-
sion of the transport properties. The dimensionless electri-
cal conductance is calculated using the Landauer-Büttiker
formula, g�E� � Tr�tty�, where t�E� is the transmission
matrix through the disordered region. This transmission
matrix can be calculated by means of the recursive Green
function method [6]. We focus first on the case of LRI
using a potential with d=a � 1:5 which is already suffi-
cient to avoid intervalley scattering. Figure 2 shows the
averaged dimensionless conductance as a function of L for
different incident energies, averaging over an ensemble of
more than 4800 samples with different impurity configu-
rations for ribbons of the width N � 10. The potential
strength and impurity density are chosen to be u0 � 1:0
and nimp: � 0:1, respectively. As a typical localization
effect we observe that hgi gradually decreases with grow-
ing length L (Fig. 2). Interestingly, hgi converges to hgi �
1, indicating the presence of a single perfectly conducting
channel. It can be seen that hgi�L� has an exponential
behavior as hgi � 1
 exp��L=�� with � as the localiza-
tion length [14].

We performed a number of tests to confirm the presence
of this PCC. First of all, it exists up to L � 3000a for
various ribbon widths up to N � 40 for the potential range
(d=a � 1:5). Moreover, it remains for LRI with d=a �
2:0, 4.0, 6.0, 8.0, and u0 � 1:0, nimp: � 0:1 and N � 10.
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FIG. 1 (color online). (a) Structure of graphene zigzag ribbon.
The disordered region with randomly distributed impurities lies
in the shaded region and has the length L. The lattice constant is
a and the ribbon width N is defined as the number of the zigzag
chains. (b) Energy dispersion of zigzag ribbon with N � 10. The
valleys in the energy dispersion near k � 2�=3a (k � �2�=3a)
originate from the Dirac K��K��-point of graphene. The red-
filled (blue-unfilled) circles denote the right- (left-)moving open
channel at the energy E0. In the left(right) valley separately the
degeneracy between right- and left-moving channels is missing
due to one excess right(left)-going mode. The time-reversal
symmetry under the intravalley scattering is also broken.
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As the effect is connected with the subtle feature of an
excess mode in band structure, it is natural that the result
can only be valid for sufficiently weak potentials. For
potential strengths comparable to the energy scale of the
band structure, e.g., the energy difference between the
transverse modes, the result should be qualitatively altered
[7]. Deviations from the limit hgi ! 1 also occur, if the
incident energy lies at a value close to the change between
g � 2n� 1 and g � 2n� 1 for the ribbon without disor-
der. This is, for example, visible in the above calculations
for E � 0:4, where the limiting value hgi< 1 (Fig. 2). As a
further test we evaluate the distribution of the transmission
eigenvalues and dimensionless conductance for fixed wire
length. In Fig. 3(a), the distribution of the eigenvalues � of
the Hermite matrix, tty, is depicted for various wire
lengths. With growing length L a progressive separation
of the transmission eigenvalues emerges with a strong peak
close to 0 (localization) and at 1 (perfect conduction chan-
nel). The distribution of the conductance g [trace of the
transmission matrix Tr�tty�], is depicted in Fig. 3(b) for
samples in the long-wire limit. Obviously, g only distrib-
utes above g � 1 with a singularity at 1.

Turning to the case of SRI, the intervalley scattering be-
comes sizable enough to ensure TRS, such that the perfect

transport supported by the effective chiral mode in a single
valley ceases to exist. SRI causes true backscattering. For a
comparison, we show the ribbon length dependence of the
averaged conductance in Fig. 4. For any incident energy the
electrons tend to be localized and the averaged conduc-
tance decays exponentially, hgi 
 exp���=L�, without de-
veloping a perfect conduction channel.

In order to demonstrate that the qualitative difference
between the two regimes, LRI and SRI, is indeed con-
nected with TRS, we study the effect of magnetic field
coupling to the electrons through the Peierls phase. For the
time-reversal symmetric situation resulting from SRI scat-
tering, the magnetic field removing TRS should have a
stronger effect than for the case of LRI where TRS is
broken already at the outset. We use the localization length
� as an indicator. In Fig. 5, the field dependence of the
inverse localization length is shown for various incident
energies (closed symbols for SRI and open symbols for
LRI). Indeed the localization length displays a stronger
field dependence than the LRI. Actually for LRI even a so-
called antilocalization behavior with increasing field is
visible consistent with recent reports on graphene [15–
17]. Note that for E< 0:4 only a single channel is involved
in the conductance such that for LRI no localization oc-
curs, i.e., ��1 � 0.
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FIG. 3 (color online). (a) Distribution
of the transmission eigenvalues �: ����,
at E � 0:5 for L=a � 50, 250, 1000,
with d=a � 2:0. E � 0:5 leads to 3 in-
cident channels. 12 000 samples with
different impurity configurations are in-
cluded in the distribution. (b) Distri-
bution of the dimensionless conductance
g: 	�g�, at L=a � 1000 for the same
parameter set.
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FIG. 4 (color online). L dependence of the averaged dimen-
sionless conductance for zigzag ribbons with N � 10, short-
ranged impurity potential (d=a � 0:05, intervalley scattering),
u0 � 1:0, and nimp: � 0:1. 5000 samples with different impurity
configurations are in the ensemble average.
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FIG. 2 (color online). L dependence of the average of dimen-
sionless conductance hgi for zigzag ribbon with N � 10, d=a �
1:5 (no intervalley scattering), u0 � 1:0, and nimp: � 0:1. More
that 4800 samples with different impurity configuration are
included in the ensemble average. (Inset) The clear linearity
for the plot of ln�hgi � 1� for higher energy modes also supports
the existence of the PCC.
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The disordered metallic carbon nanotubes with LRIs and
an odd number of channels have symplectic symmetry
which is based on the skew-symmetry of the reflection
matrix, tr � �r [10]. Such symplectic-odd system inevi-
tably causes the PCC [18]. On the other hand, zigzag
ribbons without intervalley scattering are not in the sym-
plectic class, since they break TRS in the special way. The
decisive feature for a PCC is the presence of one excess
mode in each valley. Note that this is in contrast to gra-
phene for which each mode has a partner mode of reversed
velocity in the same valley. For single-valley transport the
reflection matrix has a nonsquare form (N�r�c � N

�t�
c with

N�r�c � N�t�c � 1, where N�r�c �N
�t�
c � is the number of the

reflection (incident) channels). Recently Hirose et al.
pointed out that nonsquare reflection matrices with unitary
symmetry give rise to a PCC [19].

Eventually we can identify the universality classes of
zigzag ribbons. For LRI they belong to the unitary class
(no TRS), while for SRI with intervalley scattering they are
in the orthogonal class (with overall TRS). This classifi-
cation is compatible with the behavior in a magnetic field.

Analogous symmetry considerations can be applied to
armchair ribbons. In this case the two valleys merge into a
single one at k � 0. TRS is conserved irrespective of the
impurity potential range, if there is no magnetic field.
Consequently, disordered armchair ribbons belong always
to the orthogonal class and do not provide a PCC. In view
of the fact that graphene is known to be symplectic (or-
thogonal) for LRI (SRI) [16], it is quite intriguing to realize
that the edges influence the universality class, as long as
the phase coherence length is larger than the system size of
nanographenes.

The unusual energy dispersion due to their edge states
gives rise to the unique property of zigzag ribbons.
Concerning transport properties for disordered systems
the most important consequence is the presence of a
PCC. The origin of this effect lies in the single-valley
transport which is dominated by a chiral mode. On the
other hand, large momentum transfer through impurities
with short-range potentials involves both valleys, destroy-
ing this effect and leading to usual Anderson localization.
The obvious relation of the chiral mode with time-reversal
symmetry leads to the classification into the unitary and
orthogonal class depending on the range of impurity po-

tential. Since the intervalley scattering is weak in the
experiments of graphene, we may assume that these con-
ditions may be realized also for ribbons. Naturally, defects
in the ribbon edges and vacancies would be rather harmful
for the experiment, making this type of experiment very
challenging [6].
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(b)(a) FIG. 5 (color online). (a) Magnetic
field dependence of ��1 for various en-
ergies. Systems with SRI (closed sym-
bols) are rather sensitive to applied
magnetic fields, while LRI systems
(open symbols) remain almost unaf-
fected. �, the magnetic flux through a
hexagon ring, is measured in units of
ch=e. (b) Enlarged view of LRI data
in (a). Averages have been taken from
5000 samples.
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