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We report the first comprehensive calculations of 2� excitations with a microscopic theory applicable to
over 90% of the known nuclei. The theory uses a quantal collective Hamiltonian in five dimensions. The
only parameters in theory are those of the finite-range, density-dependent Gogny D1S interaction. The
following properties of the lowest 2� excitations are calculated: excitation energy, reduced transition
probability, and spectroscopic quadrupole moment. We find that the theory is very reliable to classify the
nuclei by shape. For deformed nuclei, average excitation energies and transition quadrupole moments are
within 5% of the experimental values, and the dispersion about the averages are roughly 20% and 10%,
respectively. Including all nuclei in the performance evaluation, the average transition quadrupole moment
is 11% too high and the average energy is 13% too high.
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Introduction.—A framework for a comprehensive
theory of nuclear structure has been discussed for a long
time [1], but up to now there has been no systematic
evaluation of the accuracy or reliability of different meth-
ods used and their underlying energy functionals. Method-
ologies based on self-consistent mean-field theory or den-
sity functional theory have been extended in different ways
with many of their details dependent on the energy func-
tional’s form. Except for one new study [2], the extensions
to treat properties of excited states have been tested only in
limited regions of nuclei. In this work we examine the
properties of the lowest 2� excited state over the periodic
table as a whole, using a methodology and energy func-
tional that has been quite successful in previous studies of
strongly deformed nuclei [3–5] and soft nuclei [6,7].

The present theory uses the generator coordinate method
with the Gaussian overlap approximation (GCM� GOA)
to construct a collective Hamiltonian. The elements of the
theory are well known in nuclear physics [1]. One starts
with the constrained Hartree-Fock-Bogoliubov (CHFB)
theory of the potential energy surface, and constructs a
collective Hamiltonian from the potential energy surface
and the information about the kinetic energy operator
obtained from the wave functions on that surface. The
finite-range density-dependent Gogny interaction D1S is
used throughout; the only parameters in the theory are
those of D1S [8,9]. The results of the CHFB calculation
are mapped onto a 5-dimensional collective Hamiltonian
(5DCH) which is formally similar to the Bohr Hamilton-
ian. It has six kinetic terms, associated with three rotational
moments of inertia and three mass parameters stemming
from the fluctuations of axial and triaxial deformations.
The rotational moments of inertia are obtained using the
Thouless-Valatin prescription from the CHFB solutions in
the presence of a small rotational field. We emphasize
that there are no adjusted parameters in the present treat-
ment of the rotational moments of inertia. The mass pa-
rameters are calculated by the Inglis-Belyaev formula,

which only requires local information about the CHFB
solutions on the grid points of a mesh in deformation space.
This is sufficient information to construct the collective
Hamiltonian, but not enough to compute matrix elements.
For that, one needs the overlaps between states of different
deformations. This is also computed using a local approxi-
mation [3]. The local approximations are quite accurate for
heavy open shell nuclei, but break down when applied to
doubly magic nuclei, because the overlap between CHFB
states is not sharp enough [1]. We therefore exclude those
nuclei from this study. The properties we discuss are the
excitation energy E, the transition quadrupole moment
h2jjQ̂2jj0i between the ground and the excited states, and
the spectroscopic quadrupole momentQ�2�� of the excited
state.

Results.—There are 557 even-even nuclei with known
2� excitation energies as of compilation by Raman et al. in
2001 [10]. Their excitation energies span more than 2 or-
ders of magnitude, presenting a very substantial challenge
to any global theory of nuclear structure. In our study here
we limit our scope somewhat by excluding the very light
nuclei (Z or N < 8), for which mean-field theory is least
justified. This eliminates 16 nuclei. Also, the mapping of
the CHFB to the collective Hamiltonian becomes problem-
atic for rigid spherical nuclei such as the doubly magic
ones. An additional 23 nuclei have been eliminated for that
reason, leaving 519 nuclei in the present study [11]. We
first discuss the energies and then the quadrupole proper-
ties of the nuclei.

Excitation energies.—Figure 1 shows a scatter plot com-
paring experimental and theoretical excitation energies.
The points follow the diagonal line fairly well with some
scatter that varies in extent over the different excitation
energy regimes. The lowest energies are for the heavy,
strongly deformed actinide nuclei; the theoretical energies
here are the most accurate (on a logarithmic as well as
absolute scale). At excitation energies of 1 MeV and
higher, the theory has only a qualitative predictive power,
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with errors ranging to a factor of 2 and larger. In the middle
the theory improves but one can see a few nuclei far from
the diagonal. They correspond to neutron-deficient iso-
topes of Hg and Pb, where there is a near-degeneracy of
weakly deformed oblate and well-deformed prolate
structures.

To make a quantitative measure of the theoretical accu-
racy, we compare theory and experiment on a logarithmic
scale, examining the statistical properties of the quantity
RE � log�Eth=Eexp�. Here Eth and Eexp are the theoretical
and experimental excitations energies, respectively. A his-
togram of distribution of the RE’s is shown in Fig. 2. One
can see that there is a bias to positive values of RE, i.e., an
overprediction of the excitation energy. For the set of
519 nuclei, the average is �RE � 0:12. Thus, there is a
systematic bias to overestimate the excitation energy
by 12%.

The width of the distribution is the important quantity to
determine the accuracy and reliability of the theory. One
can see from the histogram that the peak in the distribution
extends from RE about �0:25 to �0:50, with a small tail
going much farther from zero. A single number cannot be
adequate to express the width of such a distribution, but for
purposes of future comparisons with other theories we re-
port the root mean square deviation of RE about its mean.
This measure comes out to �E � h�R2

Ei
1=2 � 0:33. This

implies that typical errors are around �30% on the low
side to �40% on the high side after correcting for the
systematic bias. While these results may seem disappoint-
ing, one should remember that present predictions are from
a global theory with no parameter adjustment.

Quadrupolar properties.—The compilation of Raman
et al. includes 328 measured quadrupole transition rates.
Of these, 318 met the conditions for applying the 5DCH
theory. The comparison between theoretical and experi-
mental reduced transition rates B�E2; 0� ! 2�� is shown
as a scatter plot in Fig. 3. One sees that the theory is quite
accurate for the largest values; these are the actinide nuclei
which are both heavy and strongly deformed.

For a quantitative measure of the accuracy of the theory,
we define RQ � log�h2jjQ̂2jj0ith=h2jjQ̂2jj0iexp�, the loga-
rithm of the ratio of the transition matrix elements. The
distribution of RQ values is plotted as a histogram in the
right-hand panel of Fig. 2. We see that the distribution is
narrow and centered close to zero. The average of RQ val-
ues is 0.10, corresponding to a matrix element 11% too
large on average. The dispersion �Q is 0.21, corresponding
to a range of �20–� 19% about the center value.

Next we examine the spectroscopic quadrupole mo-
ments of the first excited 2� states. The comparison with
experiment for 98 nuclei is shown in Fig. 4 on linear scales.
For the experimental data, we have used the tabulation by
Stone in Ref. [12]. The quality of the experimental infor-
mation is quite variable, and we present only the cases
where the assigned error was much smaller than the mag-
nitude of the moment. Even so, there are cases (160Dy,
170;174;176Yb, and 180W) in which the sign of the moment is
not determined. These nuclei appear on the graph twice:
once with error bars, assuming that the theory gives the
correct sign, and once with open circles, assuming the
opposite sign. They are all predicted to be prolate with a
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FIG. 1. Scatter plot of 519 even-even nuclei as a function of
their experimental and theoretical 2� excitation energies.
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FIG. 2. Histogram of the logarithmic errors RE; RQ of the
present theory. Left-hand panel: Energies of the first excited
2� states for 519 of the 557 nuclei whose excitation energies are
tabulated in Ref. [10]. Right-hand panel: Matrix elements
h2jjQ̂2jj0i for the transition between the ground and first excited
state for 318 of the 328 nuclei whose B�E2� values are tabulated
in Ref. [10].
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negative quadrupole moment. Globally, there is a very
good agreement between Q�2�� measurements and
predictions.

Performance by nuclear type.—It is clear that the 5DCH
theory performs much better for strongly deformed nuclei
than for spherical ones. To make this observation quanti-
tative, we attempted to sort the nuclei into different cate-
gories and evaluate the RQ;E statistics by category. To make

this as systematic as possible, we define the categories on
the basis of the theoretical properties of the nuclei. Thus,
no empirical data are used to select the most favorable
cases.

The most obvious way to define a strongly deformed
nucleus is to make a cut on the mean quadrupole deforma-
tion ��. However, if the cut is at large enough �� to include
the well-known deformed nuclei in the lanthanides and
actinides, it will also keep certain light nuclei that have
large mean �� as well as strong fluctuations in ��. We
therefore adopt the classification by Sabbey, et al. [2],
defining a strongly deformed nucleus as one in which the
mean deformation �� is larger than the rms fluctuation in ��.
We also define a category ‘‘semimagic’’ in which either the
proton or neutron number has the value 8, 20, 28, 50, 82, or
126. The remaining nuclei in our study can be considered
either spherical or soft-deformed; they are lumped together
in the category ‘‘other.’’ The RQ;E statistics by category are
given in Table I. One sees that the bias in average energy
depends on the category: deformed nuclei are slightly
unpredicted, the other category are overpredicted, and the
semimagic nuclei are correct on average. However, the
dispersions in categories except the deformed one are
large. Here the semimagic nuclei are the poorest, with
the theory too high on average by almost 50%. In the
bottom half of the Table, for the reduced matrix elements,
the entry for the deformed nuclei stands out with an
average of 0.035 and a dispersion of less than 0.1.

Conclusion.—In this work we have tested a theory of
nuclear structure with respect to the properties of the low-
est 2� excitations in even-even nuclei. The theory is the
microscopic collective Hamiltonian for quadrupole de-
grees of freedom in which all parameters are determined
by CHFB input using the Gogny D1S interaction. The
CHFB starting point imposes shell characteristics on the
nuclear structure, and this persists to a considerable extent
in the collective Hamiltonian. The 5DCH theory is quite
reliable for open proton and neutron shell nuclei. Here
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FIG. 4. Experiment compared to theory for the quadrupole
moment of 98 excited 2� states. Experimental database is
from the tabulation in Ref. [12].

TABLE I. Statistics for the performance of the 5DCH theory
using the Gogny D1S interaction on properties of 2� excitations.
The quantities �R and � are defined in the text.

Category Number of nuclei �R �

Excitation energy

All 519 0.12 0.33
Semimagic 73 0.02 0.51
Deformed 146 �0:05 0.19
Other 300 0.22 0.29

h2jjQ̂2jj0i
All 319 0.10 0.21
Semimagic 43 0.42 0.23
Deformed 106 0.035 0.09
Other 170 0.065 0.19
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FIG. 3. Experiment compared to theory for the B�E2; 0� !
2�� for the nuclei tabulated in Ref. [10]. This graph may be
directly compared with their Fig. C. Values within the lines are
within a factor of 2 of experiment. Of the 306 cases shown here,
93% are within the error band. This is superior to their ‘‘global’’
phenomenological fit and is much better than the theoretical
models they consider.
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there are strong correlations that break the naive shell
picture and often reorganize the wave functions into a
deformed band with distinctive signatures in the properties
of the first 2� excitation. For nuclei having only one open
shell the theory is still useful for predicting excitation
energies and quadrupole transition moments—much better
than a factor of 2—but one does not achieve the quantita-
tive, 10%-level accuracy that we found for the deformed
nuclei. Finally, in doubly closed shell nuclei, the mapping
of CHFB to the collective Hamiltonian breaks down and
the theory cannot be used. Still, we found that the calcu-
lations could be made applying the theory to more than
90% of the nuclei whose 2� excitations are known.

For future work, the good results for deformed nuclei are
encouraging to a global study of other excitations implied
by the 5DCH. In particular, softness in the axial and triaxial
coordinates � and � gives rise to low-lying vibrations. The
� vibrations appear as higher lying 2� excitations, and the
systematics of their energies and transition quadrupole
moments would provide a severe test of the 5DCH theory.
The � vibration appears as 0� excitation on top of which is
built a rotational band; besides its energy, in many cases its
monopole transition matrix element to the ground state is
known.

Concerning the methodology, there are many points that
need more theoretical attention. A weak point in the
present study is the Inglis-Belyaev approximation for the
collective masses. A better approximation would be that
based on the quasiparticle-random-phase approximation
(QRPA) theory [1]. The same theory is also suitable for
the prediction of collective and noncollective modes in
closed shell nuclei for which the GCM� GOA theory
may break down. Such works are in progress.

A systematic study of 2� state energies has also been
performed recently by Sabbey et al. [2] using a different
energy functional and methodology. There (i) the zero-
range Skyrme force is used in Hartree-Fock� BCS
mean-field calculations restricted to axial quadrupole de-
formation, (ii) the configurations generated by the GCM
are projected on angular momentum J � 0 and 2 and good

particle numbers, (iii) the configuration mixing is carried
out directly rather than through a collective Hamiltonian.
In principle that method is applicable to all nuclei includ-
ing the doubly magic, but they only reported results for
two-thirds of the measured nuclei, due to numerical diffi-
culties associated with the discrete basis.

Their theory does very well on the quadrupole properties
of deformed nuclei, showing that this aspect of nuclear
structure is robust in self-consistent mean-field theory.
However, their calculated energies are systematically
higher than ours and higher than the data by about 50%.
At this time it is not clear what the origin of the difference
is. Certainly, the dependence on the functionals and on the
theoretical approximations needs to be investigated further.
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[7] P. Fleischer, P. Klüpfel, P.-G. Reinhard, and J. A. Maruhn,

Phys. Rev. C 70, 054321 (2004).
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