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We study a mechanical model known as a Galton board—a particle rolling on a tilted plane under
gravitation and bouncing off a periodic array of rigid pegs. Incidentally, this model is identical to a
periodic Lorentz gas where an electron is driven by a uniform electric field. Previous heuristic and
experimental studies have suggested that the particle’s speed v�t� should grow as t1=3 and its coordinate
x�t� as t2=3. We find exact limit distributions for the rescaled velocity t�1=3v�t� and position t�2=3x�t�. In
addition, we determine that the particle’s motion is recurrent; i.e., the particle comes back to the top of the
board with a probability of one.
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Introduction.—The Galton board introduced in [1] is
one of the simplest mechanical devices where nonstation-
ary transport occurs. It consists of a vertical (or inclined)
board with interleaved rows of pegs. A ball thrown into the
Galton board moves under gravitation and bounces off the
pegs on its way down.

Galton board has been extensively studied in various
asymptotic regimes; see [2–4] and references therein. In
this Letter we discuss an idealized infinite Galton board;
our ball is a point particle of unit mass moving according to
equations _q � v and _v � g � const and colliding elasti-
cally with immobile convex obstacles of infinite mass
(scatterers), which are positioned periodically on the
board. We assume that every straight line intersects some
obstacles, so that there are no collision-free corridors; see
Fig. 1 (this is a standard ‘‘finite horizon’’ condition that
guarantees a diffusive behavior of the ball). We neglect
friction and the spin of the ball.

This model is identical to a 2D periodic Lorentz gas [5–
8], which illustrates the transport of electrons in metals in a
spatially homogeneous electric field. Without an external
field (i.e., when g � 0), the periodic Lorentz gas reduces to
a billiard system on its fundamental domain (a torus minus
scatterers). This is known as a dispersing (or Sinai) billiard
[9]; it has a stationary Liouville measure and strong statis-
tical properties: the position q�t� of the Lorentz particle at
time t evolves as a 2D Brownian motion [10], in particular,
q�t�=

��
t
p
!N �0;D�, where D is a diffusion matrix deter-

mined by the geometry of scatterers.
Under a constant external field in the x direction, i.e.,

g � �g; 0�, the moving particle is allowed to accelerate
indefinitely; thus, the system does not have a stationary
state, but it conserves the total energy

 E � 1
2�v�t��

2 � gx�t� � const; (1)

where v�t� is the particle’s speed and x�t� its displacement
in the direction of the field. Thus the farther the particle
travels, the faster it moves. On the other hand, higher speed

leads to a stronger scattering effect, thus increasing the
chances that the particle bounces back and hence tempo-
rarily decelerates (this is similar to Fermi, or diffusive
shock acceleration [11,12]).

The backscattering effect slows down the particle’s drift
in the x direction so much that its average displacement
hx�t�i at time twill only grow as ta with some a < 1. It was
estimated [13–16] by heuristic and approximative argu-
ments, as well as computer simulation, that the displace-
ment of the particle typically grows as t2=3. Because of the
conservation of energy, its speed then grows as t1=3.

We derive these conjectures from the equations of mo-
tion and recent results [7,8], and we precisely describe the
limit distributions for the rescaled velocity t�1=3v�t� and
the rescaled position t�2=3x�t�. We also show that this
mechanical model, after a proper rescaling of space and
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FIG. 1. A ball’s trajectory on a Galton board.
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time, is governed by a certain set of stochastic differential
equations. This provides a complete solution to the classi-
cal Galton problem. In addition, we find, quite surprisingly,
that the particle’s motion is recurrent; that is, with proba-
bility one, the particle must slow down and return to the top
of the board.

Our approach is quite general. It relies only on chaoticity
of the dynamics (for large kinetic energies) and the
Einstein relation for linear response. Therefore it should
be useful in other problems such as particles in plasma
[17,18], dynamics of electrons in antidot superlattice [19],
balls falling onto a moving plate [20], to mention just a
few. In this Letter we apply our method to a relatively
simple model, so that the computations are very explicit
and transparent. Still we only present the core of our
argument here, full proofs with mathematical details will
be published elsewhere [21].

Velocity distribution.—We consider two types of Galton
boards: an ‘‘open top’’ board, where the ball bouncing back
to the top escapes, and a ‘‘closed lid’’ board where the ball
hitting the closed lid reflects back down.

We assume that the ball starts on the line x � 0 with its
initial velocity v�0� pointing in the (general) x direction,
and its initial speed v�0� must be high enough (then, in the
closed board, it will stay high at all times, due to the
conservation of energy). The initial state of the ball is
chosen randomly via a smooth probability distribution.

We obtain two major facts: (A) In the ‘‘open top’’ board
the ball escapes with probability one. (B) In the ‘‘closed
lid’’ board, the limit distribution of ct�1=3v�t�, for some
c > 0, has probability density

 

3z
��2=3�

exp��z3�; z � 0: (2)

Accordingly, the limit distribution of 2gc2t�2=3x�t� has
density

 

3

2��2=3�
exp��z3=2�; z � 0: (3)

In addition, x�t� returns to zero infinitely many times with
probability one.

The last statement means that the Galton particle evolves
in a recurrent manner—its excursions into the depth of the
Galton board alternate with retreats to the starting line x �
0. As time goes on, the particle makes longer and longer
excursions that extend farther and farther into the board
(because the average coordinate hx�t�i must grow as t2=3),
but every excursion is followed by a retreat of the particle
back onto the starting line.

To derive our results, we approximate the dynamics of
the Galton particle (whose kinetic energy K � v2=2 may
grow indefinitely) with an isokinetic particle moving at
fixed speed. To this end we rescale time t! t=

���
"
p

, where
"� K�1, which brings our system to the form where the
kinetic energy ~K � "K is of order one, but the force is

weak g! "g. In other words, we get a so-called slow-fast
system, with a slow variable ~K and a pair of fast variables
X � �q;!�, where! � v=v denotes the particle direction.
In these variables, the rescaled equations of motion read
 

_q �
�������
2 ~K

p
!; _! �

"�������
2 ~K
p �g� hg;!i!� 	O�"2�;

_~K � "
�������
2 ~K

p
hg;!i: (4)

Now we approximate (4) by an isokinetic system

 _q �
�������
2K
p

!; _! �
"�������
2K
p �g� hg;!i!�; _K � 0:

(5)

The advantage of this approximation is that the dynamics
on any energy surfaces can be reduced to that on the unit
speed surface. Namely, the solution to (5) with initial
condition (q0, !0, K0) takes the form
 

K�t� � K0;

�q;!��t; "; q0;!0; K0� � �q̂; !̂��t
���������
2K0

p
; "=2K0; q0;!0�;

where �q̂; !̂��t; "; q0;!0� denotes the solution of

 

_̂q � !̂; _̂! � "�g� hg; !̂i!̂� (6)

with initial condition (q0, !0). Equations (6) describe a
particle in a periodic Lorentz gas under a constant external
field "g moving at unit speed due to a Gaussian thermostat;
this model was introduced in [14] and studied in [7,8]. It is
known that the dynamics (6) has a steady state �" and
satisfies the central limit theorem: for any observable A

 

Z T

0
A�q̂�t�; !̂�t��dt � T�"�A� 	

����
T
p

�"�A�Z	 o�
����
T
p
�;

(7)

where Z �N �0; 1� is a standard normal random variable
and�"�A� and �"�A� are the asymptotic drift and diffusion
(standard deviation). In addition, Ohm’s Law is derived in
[7,8]:

 �"�!̂� �
1
2"Dg	 o�"�; (8)

where again D � �2
0�!̂�. The analysis of [7,8] relies heav-

ily on the fact that (6) is a small perturbation of the Sinai
billiard, which corresponds to " � 0. In particular, the
diffusion matrix depends continuously on the force
strength:

 �"�!̂� � �0�!̂� 	 o�1�: (9)

Our facts (A) and (B) actually follow from a more
general result: (C) Let �K � 0. Suppose the initial state
[X�0�, ~K�0�] of our particle (in the closed Galton board)
is chosen randomly via a probability distribution such that
~K�0� � �K, then the rescaled kinetic energy ~K��"�2�,
where 0< �< 1 is a new slow time, is approximated
(for small ") by an Itô diffusion process K��� � 0 satisfy-
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ing the stochastic differential equation (SDE)

 dK �
�2

2
���������
2K
p d�	 �2K�1=4�dW�; K�0� � �K;

(10)

where W� is the standard Brownian motion and �2 �
hg;Dgi.

Equation (10) has a notable singularity at 0, which can
be eliminated by changing variable Q �K3=2, after
which standard facts ([22], Section IX.3) guarantee the
existence and uniqueness of Q and K. Actually, Q is
known as a square Bessel process of index�1=3; see [22].
For the reader’s convenience, we derive (A) and (B) from
(C) in the Appendix.

A crucial property of Eq. (10) is its self-similarity: it
remains invariant under the transformation t! ct, K!

c2=3K. As a result, not only the rescaled kinetic energy ~K,
but the original one K as well, is approximated by (10); in
fact one can study the evolution of K�t� for 0< t < T, by
substituting " � T�2=3 in (C).

We now derive (C) from (4)–(9). Let T � �"�2 with a
small � > 0; then approximations (4)–(6) give

 

~K�T� � ~K�0� 
 "
�������
2 �K

p Z T

0
hg;!idt 
 "

Z T̂

0
hg; !̂idt;

where T̂ � T
�������
2 �K
p

. Using (7)–(9) we obtain

 

~K�T� � ~K�0� 

hg;Dgi�

2
�������
2 �K
p 	 �2 �K�1=4

����
�
p
hg; �0�!̂�Z

�2�i;

where Z�2� denotes a normal 2-vector; also observe that
hg; �0�!̂�Z

�2�i � hg;Dgi1=2Z. Likewise, if we divide a
longer time interval (0, �"�2) into segments of size
�"�2, we obtain

 

~K j	1 � ~Kj 

�2�

2
���������
2 ~Kj

q 	 �2 ~Kj�
1=4�

����
�
p

Zj; (11)

where ~Kj � ~K�j�"�2� and Zj are independent. Now (11)
is just a discrete approximation to (10).

Coordinate distribution.—We also determine the limit
distribution for the y coordinate of the Galton particle. Let
h be a unit vector in the y direction. For simplicity, assume
that the periodic array of pegs is symmetric about the x
axis, so that the Lorentz gas diffusion matrix D is diagonal,
i.e., hh;Dgi � 0. Let �2

y � hh;Dhi. For the rescaled sys-
tem (4), we have d~y=dt � "hv;hi, where ~y �

���
"
p
y. Now

the same analysis as in the previous section shows that ~y
can be approximated by the solution of SDE

 dY��� � �2K�1=4�yd ~W� 	
hh;Dgi

2
���������
2K
p d�

� �2K�1=4�yd ~W� (12)

with Y�0� � 0; here ~W� stands for a standard 1D Brownian

motion independent from W [thus (10) naturally decouples
from (12)].

For any fixed realization of K���, the conditional dis-
tribution of Y��� is such that its increments are indepen-
dent and normal:

 Y ��	 �� �Y��� �N �0; �2
y

���������������
2K���

p
��	 o���;

therefore Y��� is (conditionally) a Gaussian random vari-
able with zero mean and variance �2

y
R
�
0

���������
2K
p

���d� . Thus,

Y���=�
R
�
0

���������������
2K���

p
d��1=2 is normal N �0; �2

y� and inde-
pendent of K���.

As a result, t�2=3y�t� is a product of two independent
random variables Y1Y2, where Y1 �N �0; �2

y� and Y2 �

�
R

1
0

���������������
2K���

p
d��1=2, and K is the solution of (10) starting

at 0: We see that y�t� � t2=3.
Last, we estimate the expected number of times the

particle collides with a given scatterer. In order to hit a
scatterer during a time interval �n; n	 1�, the particle
needs to be at a distance O�1� from it at time n, and this
event has probability pn �O�n�4=3�, since the distribu-
tions of both the x and y coordinates have standard devia-
tion of order n2=3. Since

P
pn <1, the expected number

of returns to any given scatterer is finite. This indicates that
the coordinate process is not recurrent.

Three dimensional model.—Our arguments should work
in higher dimension; furthermore, in 3D the analogues of
(10) and (12) can be solved explicitly, so the results are
even easier to formulate. For simplicity we assume that the
periodic array of scatterers is symmetric about each coor-
dinate plane, so that the corresponding Lorentz gas diffu-
sion matrix is again diagonal. Let W1, W2, W3, and W4 be
some independent 1D Brownian motion processes. Then
our analysis shows that (i) the velocity process is recurrent;
(ii) the coordinate process is not recurrent; (iii) there are
constants c1, c2, c3 > 0, such that the rescaled coordinate
vector t�2=3�c1x�t�; c2y�t�; c3z�t�� converges in distribution
to [�W2

1 �1� 	W
2
2 �1��

2=3, �W3�1�, �W4�1�] where

 � �
�Z 1

0
�W2

1 �s� 	W
2
2 �s��

1=3ds
�

1=2
:

Appendix.—To derive (A) and (B) from (C) we use
elements of Itô calculus [22]. An Itô diffusion process
satisfies a SDE

 dX � a�X; t�dt	 b�X; t�dWt; X�0� � X0; (13)

where a�X; t� is the drift coefficient and b�X; t� is the
diffusion coefficient [the solution of (13) is a time-
homogeneous Markov process with continuous paths]. If
a and b do not depend on t, the Fokker-Plank equation for
this process reads

 

@�
@t
�

1

2

�
@
@x

�
2
�b2�� �

@
@x
�a��: (14)

Consider another process Y � ��X; t�, where � is a smooth
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function. The Itô formula asserts that

 dY �
�
�0a	 1

2�
00b2 	 _�

�
dt	 �0bdWt; (15)

where the primes stand for space derivatives and the dots
for time derivatives (in particular, Y is also an Itô diffusion
process).

Another useful tool is changing the time variable: in-
troducing new time dt � ��X; t�ds transforms (13) into
dX � a�ds	 b

����
�
p
dWs. Now combining (10) and (15)

shows that the process W �
������
K
p

satisfies dW �
�

23=4W 1=2 dW	, and changing the time by d
 � �2

23=2W
d	

gives dW � dW
; i.e., W �
� is a standard Brownian
motion. The latter is a recurrent process, hence so is our
K, which implies the fact (A).

Next, the process R � 	�2=3K satisfies SDE

 dR �
�

1

2
��������
2R
p �

2R

3

�
d	
	
�
�2R�1=4���

	
p dW	:

Changing time via d� � d	=	 gives

 dR �
�

1

2
��������
2R
p �

2R

3

�
d� � �2R�1=4dW�:

The Fokker-Plank equation for R reads [see (14)]

 

@�
@�
�

�
@
@r

�
2
�
�����
2r
p

�� �
@
@r

��
1

2
�����
2r
p �

2r
3

�
�
�
:

It is clear that any time independent integrable solution of
this equation must satisfy

 

@
@r
�
�����
2r
p

�� �
�

1

2
�����
2r
p �

2r
3

�
�;

thus the asymptotic density of K is (3). Last, (2) follows
from (1).
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