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An intrinsic measure of the quality of a variational wave function is given by its overlap with the ground
state of the system. We derive a general formula to compute this overlap when quantum dynamics in
imaginary time is accessible. The overlap is simply related to the area under the E��� curve, i.e., the
energy as a function of imaginary time. This has important applications to, for example, quantum
Monte Carlo simulations where the overlap becomes as a simple by-product of routine simulations. As a
result, we find that the practical definition of a good variational wave function for quantum Monte Carlo
simulations, i.e., fast convergence to the ground state, is equivalent to a good overlap with the actual
ground state of the system.
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Variational wave functions (VWF) are very valuable
tools to study interacting quantum systems. Examples are
numerous and can be found in many fields of physics, like
4He [1], high Tc superconductors [2], or the fractional
quantum Hall effect [3]. Given a variational wave function
�V , it is not difficult to sample j�V j

2 from which one
obtains the expectation value of many physical observ-
ables. It remains difficult, however, to determine to which
degree �V is a good approximation of the true ground state
�0 of the system. A first answer to this question lies in the
variational theorem itself: as the variational energy is al-
ways higher than the ground-state energy, one attempts to
get the VWF with the lowest energy. The drawback of this
criterion is that VWFs with similar variational energies can
convey very different physics as the energy is very sensi-
tive to the short range part of the VWF, i.e., when two
particles are close to each other, but rather weakly to the
long range part. This is unfortunate as other physical
observables may depend crucially on the VWF. Another
(standard) possibility is to pick the VWF that has the
lowest variance of its energy. The variance criterion has
some advantages over the energy [4] as it is a more
absolute criteria: a zero variance means that the VWF is
an eigenstate of the system (but not necessarily the ground
state).

In this Letter, we concentrate on a more intrinsic crite-
rion, namely, maximizing the overlap �:

 � �
jh�Vj�0ij

2

h�0j�0ih�Vj�Vi
(1)

of �V with the actual ground state �0 of the system. A
direct calculation of � would require the complete knowl-
edge of the ground state �0, which is extremely computa-
tionally demanding. The main result of this Letter, namely,
Eqs. (3) and (4), is that � can be related to the energy, upon
projection of the initial VWF in imaginary time. Hence, �
can be simply obtained as the by-product of quantum

Monte Carlo simulations. In this Letter, we focus on this
particular method to determine �. We would like to em-
phasize, however, that our main result together with in-
equalities (6), (7), and (11) are general and can be applied
to other methods.

The development of zero temperature quantum
Monte Carlo (QMC) techniques (diffusive or Green func-
tion Monte Carlo algorithms) relies on the availability of
good VWFs. Although those techniques allow one to ac-
cess ground-state properties, VWFs play a crucial role for
two reasons. First, QMC uses a VWF to properly sample
the Hilbert space through ‘‘importance sampling.’’ An
homogeneous sampling of Hilbert space would mean
spending a very large amount of time sampling regions
of the Hilbert space that have almost no contribution to �0.
Second, even though QMC simulations can give interesting
information on the system they do not necessarily explain
the physical mechanisms involved. Valuable insight can
often be obtained just by looking at how the VWF is
constructed. For instance, the short and long range behav-
ior of a Jastrow type VWF, or more dramatically the
analytical structure of the Laughlin wave function in the
fractional quantum Hall effect, conveys in itself useful
information. With QMC comes an empirical criterion for
what is a good VWF: it should allow the simulation to
converge from �V to �0 as fast as possible. We shall see
that this criterion actually coincides with maximizing the
overlap � of �V with the actual ground state �0.

The idea to maximize the overlap as a variational crite-
rion was put forward 20 years ago [5–7]. It was shown that
for a certain class of VWF, merely of the Jastrow type and
its extensions, maximizing � amounts to choosing the
Jastrow function that reproduces exactly the (mixed esti-
mator of the) static structure function. Hence the practical
criterion was to optimize the static structure function ob-
tained from variational Monte Carlo simulations by com-
parison with that coming out of QMC simulations. Here we
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choose a different route and show that � can be computed
directly as a simple by-product of a QMC run. In QMC
techniques one starts with an initial wave function �V and
then integrates in a stochastic way the imaginary time
Schrödinger equation @�� � �H�, the formal solution
being ���� � e��H�V . For a large �, ���� actually con-
verges toward �0. In practical simulations, one usually
computes the energy

 E��� �
h�V jHj����i
h�Vj����i

�
h�V jHe

��Hj�Vi

h�Vje
��Hj�Vi

(2)

until E��� has converged to its asymptotic value, the exact
ground-state energy E0. An example of a typical E���
curve is shown in Fig. 1 for the system discussed at the
end of this Letter. By introducing � as

 � � e��; (3)

the principal result of this Letter is that � is simply given by
the shaded area in Fig. 1. Or more precisely,

 � �
Z 1

0
d��E��� � E0�: (4)

It is therefore straightforward to obtain � from a QMC
simulation.

Equation (4) calls for a few comments. (i) As mentioned
above, Eq. (4) combines a theoretical criterion, maximiz-
ing the overlap between �V and �0, and a practical
criterion that is fast convergence to E0. Conversely, a
wave function that has a low variational energy but con-
verges very slowly toward E0 has a poor overlap with the
actual ground state. (ii) � is not a substitute for the varia-
tional energy (or variance) as it requires a full QMC
simulation. (iii) In contrast with energy and energy vari-
ance, � is dimensionless and hence has an absolute mean-

ing. For example, � � 0:97 means that the VWF captures
97% of the ground state. (iv) In some instances, one is
interested in the thermodynamic N ! 1 limit, where N is
the number of particles in the system. It is easy to be
convinced that the generic behavior of � is an exponential
decrease with N. This can be seen, for instance, in a non-
interacting Bose-Einstein condensate, where any error in
the one particle wave function appears to the power N in
the many-body wave function. More generally, the energy
is usually an extensive quantity and hence � scales linearly
with N for large N. In that case, the correct measure of the
accuracy of a VWF is �=N so that � � �0:99�N , for
example, means that the VWF captures ‘‘per particle’’
99% of the ground state. �=N usually shows weak finite
size effect upon increasing N. (v) In practice, we have
found that the accuracy of � is similar to that obtained
for other physical quantities like density or density-density
correlations but slightly less precise than that achieved for
E0. (Relative precisions of 10�4 or better are routinely
obtained for the latter.)

Proof of Eq. (4).—The proof is straightforward. We
introduce the pseudopartition function Z��� �
h�Vj����i � h�V je

��Hj�Vi, which, in analogy to the
finite temperature partition function, is related to the en-
ergy through E��� � �@� logZ���. Defining ��0 as the
ground state normalized to unity, ���� converges towards
���� !

������������
Z�2��

p
��0 for large �. Using the definition of �

and Z��� one obtains

 � � lim
�!1

�Z����2

Z�0�Z�2��
: (5)

Further, from E��� � �@� logZ��� one finds
log�Z���=Z�0�� � �

R
�
0 E���d� and log�Z�2��=Z���� �

�
R

2�
� E���d�. In the latter, for � large enough, E��� �

E0 such that Z�2��=Z��� � exp��E0��. Collecting terms
together in Eq. (5), we arrive at Eq. (4).

Link with mixed estimators.—One drawback of QMC
calculations is that when the quantum average of an ob-
servable Â is measured, the mixed estimate AMX �

h�VjÂj�0i=h�V j�0i naturally emerges. For some observ-
ables it is possible to actually calculate the correct quantity
A0 � h�0jÂj�0i=h�0j�0i using, for instance, forward
walking techniques [8]. However, this concerns mainly
local quantities and does not apply to nonlocal ones. For
the latter, one has to rely on the extrapolation formula,
A0 	 2AMX � AV , where AV � h�V jÂj�Vi=h�V j�Vi.
This formula [9] is only valid when �0 is close to �V ,
otherwise it is uncontrolled. If Â is definite positive, it takes
the form Â � dyd and the overlap allows one to obtain the
following lower bound for A0,

 A0 

�AMX�

2

AV
�: (6)

A particularly interesting example is the condensate frac-

2
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FIG. 1 (color online). Typical curve for the energy E��� as a
function of the imaginary time �. The thick line is a typical trace
(with high precision) while the dashed line corresponds to the
asymptotic value E0. The logarithm of the overlap � is simply
given by the shaded area between the two curves (see text). The
data have been obtained for the model of dipolar bosons, defined
Eq. (8), with very high precision.
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tion of a Bose condensate where the operator dy creates a
particle in the k � 0 state. Unfortunately, this lower bound
is only useful for small systems like atoms or molecules, or
for extremely good VWFs, since the exponentially de-
creasing nature of the overlap quickly makes it meaning-
less. To prove Eq. (6), one simply writes Schwartz
inequality, jhCjBij2 � hCjCihBjBi with jCi � dj�0i and
jBi � dj�Vi.

Link with the energy gap.—Another application of the
calculation of the overlap is that it gives access to an upper
bound value for the gap of the system, i.e., to information
on the excitation spectrum. Indeed, it is straightforward to
show that the difference � between the first excited state
and E0 obeys: [10]

 � �
EV � E0

1��
: (7)

Again, such an upper bound value is usually useless in the
thermodynamic limit (N ! 1) where there usually is a
continuum of excitations. It can be used, however, for
molecular or atomic systems. In this case, one should
look for a wave function close to the first excited state.
Such a VWF has a rather low energy but also a low overlap
with the ground state. In practice, the VWF, being close to
an eigenstate, has a low variance, and as the variance is
�@E=@�j��0, the E��� curve converges slowly to the
ground-state energy, hence resulting in a small overlap.
The quality of this upper bound value depends on the
projection of the VWF on the excited states other than
the first one and the inequality becomes an equality when
the VWF has projections only on the ground state and first
excited state.

Application.—To illustrate the utility of the above dis-
cussion, we now turn to a specific example where the
calculation of the overlap can be particularly useful. The
system discussed below is close to a first order liquid-solid
transition. On one hand, the chosen VWF is close to the
liquid state so that optimizing the variance or the energy
leads closer to the liquid state. On the other hand, the true
ground state is the crystal as indicated by the calculation of
the overlap. More precisely, we consider a system of N
bosons in two dimensions with a repulsive dipolar interac-
tion. This system is subject to current research as it is a
candidate for a realizing a crystal in ultracold atom experi-
ments [11,12]. A detailed study of the model will be
presented elsewhere [13], and we focus here on the rele-
vance of �. The scaled Hamiltonian takes the form

 H � �
1

rs

XN
i�1

r2
i � 2

X
i<j

1

jri � rjj3
; (8)

where rS controls the relative strength of the dipolar inter-
action over the kinetic one. This model shows a first order
transition at rS � rS 	 27: for rS � rS the system is in a
Bose-Einstein phase while for rS 
 rS the system crystal-
lizes into a triangular lattice. Note that this crystal-Bose-

Einstein transition has been discussed recently in
Refs. [11,12]. We use a VWF of Bijl-Jastrow form:

 �V�r1; . . . ; rN� �
YN
i�1

�1�ri�
Y
j<k

�2�jrj � rkj�; (9)

where the Jastrow part includes two-body correlations,

�2�r� � exp��2
���
rs
r

q
e�r=A�. The one-body part allows to

break translational symmetry and interpolates from a con-
densatelike VWF to a crystal-like VWF. Noting �y, the
distance between lattice sites of the crystal along the y axis,
we define the vector q1 � �0; 2�=�y� in the reciprocal
lattice. Vectors q2=3 are obtained by rotating q1 by an angle
of 2�=3 and �2�=3. We choose a one-body trial function

 �1�r� �
Y

i�1;2;3

�1� � cos�qi � r��; (10)

whose maxima reproduce the triangular lattice expected
for the crystal. This function is well suited to describe
quantum melting since it interpolates between a flat liquid
(BEC)-type pattern for � � 0 to a triangular crystal form
for � � 0. Setting rS � 28:6, i.e., slightly above the crys-
talline transition, we investigate our VWF as a function of
the translational symmetry breaking parameter �. The
results are presented in Fig. 2. The details of our algorithm
can be found in Refs. [13,14]. In particular, we used the
Green function Monte Carlo technique on a spatial grid
with a filling factor � � 1=56 particles per site.

The system is clearly in a crystal state, as demonstrated
by computing the static structure factor, and hence a good
variational ansatz is expected for � � 0. Figure 2 shows,
however, that both the variational energy and variance
indicate a minimum for � � 0. On the other hand, �
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FIG. 2. Upper panel: parameter �=N measuring the overlap
between the guiding function and the actual ground state of the
system as a function of the symmetry breaking parameter �. The
arrow indicates that the point at ��� � 0� is lower than the
correct value, a small � � 0 being needed for the simulation to
fully converge to the ground state. Middle panel: variational
energy EV as a function of �. Lower panel: square root of the
quantum variance �2

V of the VWF as a function of the symmetry
breaking parameter �. All data are taken for 32 bosons in a 32�
56 grid at rS � 28:6.
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decreases with � indicating that the phase with � � 0 is
the correct one. This is an extreme case where the tradi-
tional criterion on the energy and variance actually gives a
false answer even qualitatively while the overlap indicates
the correct answer.

Conclusion.—It is interesting to note that both the stan-
dard criteria used to characterize a VWF (variational en-
ergy and variance), as well as the overlap discussed in the
present Letter, are all different aspects of the energy-
imaginary time E��� curve: the variational energy EV �
E�� � 0�, the variational variance �2

V � �@E=@�j��0, and
the overlap is the integral of E���. Hence the different
criteria give informations on different characteristics of
E���. While no general statement can be made, in many
instances the VWFs used are a fair description of the
ground state. In these cases E��� looks typically like the
curve shown in Fig. 1 and, in particular, has a positive
curvature. Assuming a positive curvature, we find that the
various criteria are related to each other as

 � � exp���EV � E0�
2=�2�2

V��; (11)

obtained using the fact that E��� lies above its tangent at
� � 0. Although the above inequality is not completely
general, it gives a rough estimate of the overlap in many
practical cases. One can note that strictly speaking, the
above estimate decreases when the variance decreases. It is
therefore imperative that the variance and variational en-
ergy are optimized simultaneously.

To conclude this Letter, we have shown that from the
data given by usual QMC calculations, it is possible to
extract relevant information on the quality of the varia-

tional wave function used. We stress that our main result,
Eq. (4), applies generally to any projection technique in
imaginary time and not only to QMC.
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[12] H. P. Büchler, E. Dernler, M. Lukin, A. Micheli,

N. Prokof’ev, G. Pupillo, and P. Zoller, Phys. Rev. Lett.
98, 060404 (2007).

[13] C. Mora, O. Parcollet, and X. Waintal, arXiv:condmat/
0703620.

[14] X. Waintal, Phys. Rev. B 73, 075417 (2006).

PRL 99, 030403 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
20 JULY 2007

030403-4


