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An essentially exact approach to compute the wave function in the time-dependent many-boson
Schrödinger equation is derived and employed to study accurately the process of splitting a trapped
condensate. As the trap transforms from a single to double well the ground state changes from a coherent
to a fragmented state. We follow the role played by many-body excited states during the splitting process.
Among others, a ‘‘counterintuitive’’ regime is found in which the evolution of the condensate when the
splitting is sufficiently slow is not to the fragmented ground state, but to a low-lying excited state which is
a coherent state. Experimental implications are discussed.
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The first realizations of Bose-Einstein condensates
(BECs) in ultracold dilute gases have boosted the com-
munity to explore matter-wave phenomena and how to
manipulate and utilize them. One of the most popular
‘‘screenplays’’ studied is splitting of BECs by deforming
a single well to a double well; see [1–5] for experimental
and [6–11] for theoretical works. In such scenarios, the
system is often prepared in the ground state of a harmonic
trap and a central barrier is ramped-up to a certain fixed
height. As the trap transforms from harmonic to double-
well geometry the system continuously changes its local-
ization from the center of the initial trap to two separated
parts localized around the minima of the double well. Side
by side, it can also change its character—from condensed
to a twofold fragmented state [8]. Attacking the splitting
process, much attention has been paid to understanding
when it is adiabatic [6–8], demonstrating that the slower
the barrier is ramped-up (to a certain fixed height), the
closer the BEC is to the ground state of the bosons in the
double well.

Here we study the many-body dynamics of splitting a
BEC beyond the presently available theoretical and com-
putational approaches. We develop and report on an essen-
tially exact and numerically efficient approach for the
solution of the time-dependent many-boson Schrödinger
equation, which we term multiconfigurational time-
dependent Hartree method for bosons (MCTDHB).
Applying the MCTDHB method to the problem of splitting
a BEC, we follow the many-boson wave function through-
out the splitting process and identify the role and impact of

many-body excited states. Among others, we identify a
new ‘‘counterintuitive’’ regime where the evolution of the
condensate when the barrier is ramped-up sufficiently slow
is not to the ground state of the double well which is a
fragmented BEC, but to a low-lying excited state which is a
coherent BEC.

Our starting point is the many-body Hamiltonian de-
scribingN interacting bosons in a trap, Ĥ �

PN
k�1�T̂�rk� �

V�rk; t�� �
PN
k>l�1 U�rk � rl�. Here, rk is the coordinate of

the kth particle, T̂�r� and V�r; t� stand for the kinetic energy
and trap potential, respectively, and U�rk � rl� describes
the pairwise interaction between the kth and lth atoms. To
solve the time-dependent Schrödinger equation Ĥ� � i @�

@t
we write the many-body wave function � as a linear
combination of time-dependent permanents

 ��r1; r2; . . . ; rN; t� �
X
~n

C~n�t�� ~n�r1; r2; . . . ; rN; t�: (1)

In the representation (1), the time-dependent permanents
� ~n are constructed by distributing the N bosons over j �
1; . . . ;M time-dependent orbitals f�j�r; t�g, and the sum-
mation runs over all possible occupations ~n preserving the
total number of bosons N.

To proceed, we utilize the Dirac-Frenkel variational
principle [12] and after some lengthy but straightforward
algebra obtain a set of coupled nonlinear, generally
integro-differential equations for the coefficients C~n�t�
and orbitals f�j�r; t�g, for all ~n and j � 1; . . . ;M,

 P̂
�
fT̂�r��V�r; t�g�j�r; t��

X
qksl

f��t�g�1
jq �qksl�t�Ukl�r; t��s�r; t�

�
� i
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@t

;
X
~n0
h� ~njĤj� ~n0 iC~n0 �t� � i

dC~n�t�
dt

: (2)

The quantities ��t� � f�qs�t�g and �qksl�t� appearing in (2) are the matrix elements of the reduced one- and two-body
densities of �, ��r1jr01; t� �

PM
qs �qs�t��

�
q�r01; t��s�r1; t� and ��r1r2jr01; r

0
2; t� �

PM
qksl �qksl�t��

�
q�r01; t��

�
k�r
0
2; t�	

�s�r1; t��l�r2; t�, respectively. The local time-dependent potentials Ukl�r; t� �
R
��k�r

0; t�U�r� r0��l�r0; t�dr0 originate
from the two-body interaction. Finally, the operator P̂ � 1�

PM
k�1 j�k�r; t�ih�k�r; t�j appearing on the left-hand-side of
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Eq. (2) is a projection operator which ensures that the
orbitals remain orthogonal to one another throughout the
propagation in time. Full details of the derivation and
numerical implementation of equations of motion (2) and
their uniqueness are given in [13]. It is gratifying to men-
tion that the present many-body propagation theory adapts
to identical bosons the multiconfigurational time-
dependent Hartree approach routinely used for multidi-
mensional dynamical systems consisting of distinguishable
particles [14].

To study the dynamics of splitting a repulsive BEC we
consider N � 200 87Rb atoms initially prepared in an
elongated, quasi-one-dimensional harmonic trap of longi-
tudinal !k �2�	44:7 Hz and transverse !?�2�	
1:1 kHz frequencies. At time t � 0 a barrier of Gaussian
shape is ramped-up linearly in time to a height of Vmax

and with ramp-up time of Tramp. Introducing a conve-
nient length scale of L � 1 �m, we translate to dimen-
sionless units in which the kinetic energy reads T̂�x� �
� 1

2
@2

@x2 , the time-dependent trap potential is V�x;t�� x2

2�2�

Vmax exp�� x2

2�2�	ft=Tramp;t
Tramp; or 1;t>Trampg, and
the effective atom-atom interaction is U�x� x0� �
�0��x� x

0�, where the transverse confinement is properly
accounted for [15]. The values of the parameters are � �
2:6 and Vmax � 30, corresponding to an interwell separa-
tion of 13:6 �m at the end of the ramping-up process, and
�0 � 0:1. For this final double-well potential the ground
state is (totally) twofold fragmented. Finally, time is ex-
pressed in units of mL

2

@
� 1:37 msec, where m is the mass

of 87Rb atom, and energy in units of @
2

mL2 � 116 Hz.
We begin our investigations by ramping-up the barrier

during a time of Tramp � 1000 until the final double well
is achieved. Since visualization of the time-dependent
many-body wave function is quite cumbersome, we pre-
scribe its natural occupation numbers, i.e., eigenvalues of
the corresponding reduced one-particle density
��xjx0; t� �

PM
j �j�t��

�NO
j �x0; t��NO

j �x; t�, at each point
in time [8,16]. We have found that for the range of pa-
rameters considered here, MCTDHB with two orbitals
accurately describes the many-body dynamics. The corre-
sponding �j�t� are plotted in Fig. 1(a) as a function of time.
The initial state is a slightly depleted BEC, �1�0� �
99:62% and �2�0� � 0:38%, as at t � 0 only one natural
orbital is macroscopically occupied. As the barrier is
ramped-up, �2�t� increases with time, i.e., the many-body
wave function becomes more and more depleted. At ap-
proximately one third of the ramping-up time �1�t� �
�2�t�, indicating that the system is momentarily twofold
fragmented. From now on and although the barrier is
ramped-up further, �1�t� and �2�t� oscillate around this
totally fragmented configuration, as has been obtained in
[8]. It is worth noticing, however, that an oscillatory be-
havior of the occupation numbers exists during all the
splitting process with different amplitudes and frequencies,
see Fig. 1(a).

The oscillations of �j�t� in time signify that the system is
not in the ground state of the time-dependent trap [for this
state �1 (�2) decreases (increases) monotonically with
barrier height, see, e.g., [16]]. To investigate which
many-body excited states contribute to these oscillations,
we compute via imaginary time propagation of MCTDHB
several low-lying many-body eigenstates of the static sys-
tem at different barrier heights along the ramping-up path.
The energy difference �E between the ground and first
excited state is plotted in Fig. 1(b) as a function of barrier
height. Since the barrier height increases linearly with time
we can measure the evolution in the units of either
ramping-up times or barrier heights. Next, we compute
the inverse frequencies T � 2�

�E and compare them with
the corresponding oscillation periods of �j�t� at different
barrier heights.

Here we present a comparison at two different times: at
tI � 0:14Tramp and tII � Tramp. In the inset of Fig. 1(a) we
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FIG. 1 (color online). Splitting a trapped condensate of N �
200 bosons (87Rb atoms) with interaction strength �0 � 0:1
during a ramp-up time of Tramp � 1000. (a) Natural occupation
numbers �1�t� and �2�t� as a function of time on a logarithmic
scale [initial conditions: �1�0� � 99:62%, �2�0� � 0:38%].
During the splitting process the many-body wave function
evolves from a condensed towards a twofold fragmented state.
Inset shows oscillatory behavior of �2�t� around 0:14Tramp.
(b) Energy difference �E between the many-body ground state
(�; taken as reference energy) and first excited state (�) as a
function of barrier height of the time-dependent trap potential
V�x; t�; see text for more details. Time is expressed in units of
mL2

@
� 1:37 msec and energy in units of @

2

mL2 � 116 Hz.
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plot on an enlarged scale the oscillations of �2�t� around tI.
The period of oscillations deduced from this inset is TI �
13:7. Since the ramping-up process is linear, tI corresponds
to the barrier height of VI � 0:14Vmax. The corresponding
energy difference �EI � 0:47 gives the value of T �
2�
�EI
� 13:4, which is close to the observed oscillation

period of �2�t� for this time point. Analogously, at tII the
observed oscillation period of TII � 317:9 agrees with the
respective value of T � 333:5 obtained from �EII �
0:0188. We obtain reasonable agreement between corre-
sponding inverse frequencies and oscillation periods for
other times as well. This analysis indicates an adiabatic
character of the studied ramping-up process, and that only
one many-body excited state is primarily involved in the
many-body dynamics.

Let us now analyze the amplitudes of the oscillations of
the natural orbitals. From Fig. 1(a) we see that oscillations
are very modest at the beginning of the ramping-up process
and substantial at the end of the process (notice the loga-
rithmic scale). This is in accord with the decreasing many-
body energy difference �E depicted in Fig. 1(b). As ex-
pected, an ideal adiabatic ramping-up along the ground-
state trajectory is favored by a large �E. It is achieved for
ramping-up times Tramp large compared to the inverse
frequency T � 2�

�E .
To study quantitatively the adiabatic character of the

ramping-up process, we repeat the computation for several
Tramp. The results for Tramp � 25, 3000, 10 000 are pre-
sented in Fig. 2. From this figure a significant suppression
of the amplitudes of the oscillations with growing ramping-
up times is clearly seen. For the studied system ofN � 200
bosons, a ramping-up procedure as long as of Tramp �

10 000 � 13:7 sec still leads to 10.7% fluctuations of the
final state. We see that even for such a long ramping-up
time, which is of the order of the lifetime of a BEC [5], the
final state deviates noticeably from the respective eigen-
state and the ramping-up process is still away from being
‘‘ideal adiabatic.’’

In the above example the properties of the ground state
and lowest-excited state change smoothly with barrier
height. For small barrier heights these states are condensed,
the excited state being more depleted than the ground state.
As the barrier grows, these states become twofold frag-
mented and the first excited state results from the ground
state by a transfer of a boson from one fragment to another.
However, this simple scenario can vary strongly with the
number of particles and with their interaction strength
[16,17].

To proceed, we consider the same experiment as before,
but with a three-times stronger interaction strength �0 �
0:3. This is achieved by a tighter confinement of !? �
2�	 3:3 kHz. Again, the ground state of the final double
well for this system is fully twofold fragmented. In
Fig. 3(a) we plot �j�t� for the durations Tramp � 75 and
Tramp � 500 of the ramping-up process. In both cases, the
initial wave function is the ground eigenstate in the har-

monic trap which is a slightly depleted BEC, �1�0� �
99:32% and �2�0� � 0:68%, see Fig. 3 at t � 0. The
evolution of �j�t� for the faster ramping-up process of
Tramp � 75 looks like the ‘‘adiabatic’’ dynamics studied
in the previous example but it is not such a dynamics.
Indeed, prolonging the ramping-up time, e.g., to Tramp �

500, the time-dependent solution does not at all evolve
towards the fragmented ground state, but rather to an
intermediate state which, according to the occupation num-
ber analysis, remains condensed all the time. We have
found such a behavior in many other numerical examples.

To investigate this ‘‘counterintuitive’’ regime, which we
call inverse regime, we again compute the lowest eigen-
states of the static double wells at different barrier heights.
The relevant map of energy differences �E is plotted in
Fig. 3(b) as a function of barrier height. This map has very
interesting features—around some critical barrier height
Vcr � 0:41Vmax the ground and lowest-excited states come
very close to each other and interchange their order. Such a
behavior signifying a very narrow avoided crossing (the
width of which we cannot detect here) can appear only
between states of very different physical origin. Indeed, at
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FIG. 2 (color online). Quantifying how difficult it is to (fully)
fragment a condensate. Plotted are the natural occupation num-
bers �1�t� and �2�t� as a function of time for three ramping-up
times Tramp. The parameters used are the same as in Fig. 1.
Increasing Tramp the time-dependent many-body state ap-
proaches the ground state of the double-well potential which is
a (fully) fragmented condensate. For Tramp � 10 000 � 13:7 sec
which is of the order of a condensate lifetime the amplitude of
oscillations is still about 10%.
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V � 0:40Vmax, the ground state is a slightly depleted BEC,
�1 � 98:14%, �2 � 1:86%, while the first excited is al-
most a totally twofold fragmented state: �1 � 51:0%,
�2 � 49:0%. At V � 0:42Vmax the situation is inverse:
the ground state is now twofold fragmented �1 �
50:32%, �2 � 49:68%, while the first excited state is con-
densed �1 � 98:12%, �2 � 1:88%.

The following picture of the splitting a BEC process
emerges in the inverse regime. For a slow ramping-up
process, only one quantum eigenstate is essentially popu-
lated although another state is crossing or very close by.
Clearly, because of the very different physical nature of
both states, the initially populated state cannot abruptly
change its properties during the relevant time interval and

the presence of the partner state essentially does not influ-
ence the dynamics. On the other hand, for a faster ramping-
up process, more excited eigenstates are involved in the
evolution and a coupling between these eigenstates allows
the system to overcome the crossing point and evolve
towards the lowest eigenstate which is a true twofold
fragmented ground state.

Let us briefly summarize. We show that the dynamics of
splitting of an ultracold bosonic cloud by ramping-up a
barrier depends on the duration of the process and on the
(effective) interaction strength between the bosons. There
are (at least) two distinct regimes: (i) an adiabatic regime
where the initial condensed ground state evolves towards
the ground twofold fragmented eigenstate of the final
double-well potential and asymptotically approaches it
with increasing ramping-up time and (ii) an inverse regime
where the initial condensed state evolves towards the
ground twofold fragmented eigenstate only for short
ramping-up times, while for slow ramping-up processes
the time-dependent state stays condensed during all the
evolution and thereby evolves to a nonground many-body
eigenstate. The physical insight on these regimes follows
from the analysis of the low-lying many-body excited
states taken at different times. The above findings were
made possible by developing MCTDHB capable of provid-
ing a quantitative description of the time evolution of the
bosonic systems. MCTDHB opens up further possibilities
to explore the challenging many-body dynamics of many-
boson systems.
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FIG. 3 (color online). Same as in Fig. 1 except for the stronger
interaction strength �0 � 0:3. (a) Natural occupation numbers
�1�t� and �2�t� as a function of time [initial conditions: �1�0� �
99:32%, �2�0� � 0:68%]. For Tramp � 75 the many-body wave
function evolves from a condensed towards the twofold frag-
mented ground state. The ‘‘counterintuitive’’ regime is uncov-
ered by employing a longer ramp-up time, e.g., Tramp � 500, in
which the evolution of the condensate is not to the fragmented
ground state, but to a low-lying coherent excited state.
(b) Energy differences �E between the lowest-in-energy coher-
ent state (�; taken as reference energy) and fragmented states (�
curves) as a function of barrier height. Around Vcr � 0:41Vmax

the coherent ground state and lowest-excited fragmented state
come very close to each other and interchange their order; see
text for more details.
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