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Using fast confocal microscopy we image the three-dimensional dynamics of particles in a yielded
hard-sphere colloidal glass under steady shear. The structural relaxation, observed in regions with uniform
shear, is nearly isotropic but is distinctly different from that of quiescent metastable colloidal fluids. The
inverse relaxation time ��1

� and diffusion constant D, as functions of the local shear rate _�, show marked
shear thinning with ��1

� / D / _�0:8 over more than two decades in _�. In contrast, the global rheology of
the system displays Herschel-Bulkley behavior. We discuss the possible role of large scale shear
localization and other mechanisms in generating this difference.

DOI: 10.1103/PhysRevLett.99.028301 PACS numbers: 82.70.�y, 83.50.�v, 83.60.�a, 83.80.Hj

Glassy materials are ubiquitous in nature and in industry,
e.g., molecular and metallic glasses [1,2] and soft glasses
[3,4] like colloidal suspensions. Of special interest is their
rheology. Glasses have liquidlike microstructure, but solid-
like mechanical behavior. At low applied stress, they have
finite shear moduli, but at larger stress they yield and
display highly nonlinear flow behavior.

Even the simplest form of nonlinear glassy rheology,
steady shear, is far from fully understood. Various theo-
retical mechanisms are proposed [4–7] for shear-induced
relaxation of arrested matter, predicting a variety of con-
stitutive relations. Significantly, all these theories assume
globally uniform shear. Simulations, so far the main tool
to check directly the relation between microscopic behav-
ior and macroscopic flow, reveal spatially heterogeneous
relaxation [7,8] and strong shear thinning [9,10].
Experiments are just starting to address microscopic dy-
namics under shear, but have been limited to coarse-
grained data, two dimensional (2D) or interrupted flows,
or ordering phenomena [11–14]. Moreover, experiments
imaging global flow [15] as well as boundary driven simu-
lations of Lennard-Jones (LJ) glasses [16] show that (soft)
glasses often exhibit shear localization, which cannot be
described by simple constitutive laws.

Here we report a three-dimensional (3D) imaging study
of microscopic relaxation in a colloidal glass under steady
shear. The relaxation rate ��1

� and the diffusion constant D
are nearly isotropic and show marked shear thinning as a
function of the local shear rate _�: ��1

� / D / _�0:8. The
latter contrasts significantly with the global rheology,
which shows Herschel-Bulkley behavior.

We used sterically stabilized polymethylmethacrylate
colloids (radius a � 850 nm, measured by light scattering,
polydispersity &10% [17]) dyed with nitrobenzoxadiazole
and suspended in cycloheptyl bromide mixed with decalin
for density and refractive index matching. In this medium
colloids have a small charge [18] which we screen by
adding 4 mM tetrabutylammoniumchloride, giving nearly
hard-sphere (HS) behavior and a glass transition at volume

fraction �g ’ 0:58 (determined from mean-squared dis-
placements) [19]; we work at � ’ 0:62 (measured by
imaging). The reduced shear rate, or Péclet number, is
Pe � 4a2 _�=D0 � 24 _��B, with D0 the bare diffusion co-
efficient and �B � 1:24 s the Brownian time in our system.

We used a linear parallel-plate shear cell with a plate
separation �400–800 �m, parallel to �5 �m over a
�200 mm2 drop of colloid confined between the plates
by surface tension. We define x, y, and z as the velocity,
vorticity (or neutral), and gradient directions, respectively.
The top plate is driven at 0:05–10 �m=s by a mechanical
actuator with magnetic encoder and steady shear is applied
up to a total accumulated strain �� ’ 1000%. Wall slip
and wall-induced ordering were prevented by coating the
slides with 1–3 disordered layers of colloid. A solvent bath
minimized evaporation.

A 30� 30� 15 �m3 volume in the drop, with N �
3000 colloids, was imaged from below as a stack of 75
slices using a fast confocal scanner (VT-Eye, Visitech Int.).
Each stack acquisition took 1.7 s. Colloids were located to
�30 nm in x, y, and �90 nm in z [21]. Tracking from
frame to frame was achieved by first subtracting from the
raw coordinates a time dependent x-displacement pro-
file �x�z; t�, measured via correlation analysis of raw
images, and adding this back after particle tracking [22].
The resulting x displacements over a given time dt,
f�xi�zi; dt�g (i � 1 to N), always have an average linear
dependence on z, demonstrating uniform shear in our
imaged volume. We measured the actual (local) shear
rate _�, which may differ from the applied (global) rate
_�a due to shear localization and the presence of jammed

regions. We will return to this point; for now we focus on
steady states with uniform shear in a region from
15–30 �m above the cover slide. When present, strong
decay in _� occurs at least �z� 20a away from imaged
regions. We also checked, via bond-order analysis [23],
that shear crystallization [24] was absent for _� & 0:1 s�1.

Figure 1(a) displays the trajectories in an x, z slice at
_� � 0:93� 10�3 s�1, showing the displacement gradi-
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ent due to shear. To highlight the shear-induced dynam-
ics, we show in Fig. 1(b) the nonaffine displacements
obtained by subtracting the uniform shear via ~xi � xi �
_�
R
t
0 zi�t

0� dt0. Considerable nonaffine displacements are
seen in this and other planes, Figs. 1(c) and 1(d). On the
time scale considered here, these rearrangements are het-
erogeneous, somewhat similar to the quiescent dynamics in
dense colloidal fluids with �<�g [25]. Focusing on a
single particle, Fig. 1(e), we see that its dynamics under
shear consists of intervals of cage ‘‘rattling,’’ interrupted
by shear-induced cage-breaking events.

Next, we study the relaxation via the incoherent scatter-
ing function, Fs�Q; t� � hcos�Q�yi�t0 	 t� � yi�t0�
�ii;t0 , at
a scattering vector Q � Qm ’ 3:8a�1 where the data’s
structure factor S�Q� shows a peak. In Fig. 2 we show
selected results for ~Q k y, but the results (not shown) for
~Q k z and x, using the nonaffine displacements ~xi for the

latter, are similar. Fs for the quiescent glass ( _� � 0) hardly
decays over our observation window, reflecting the caging
of particles by their neighbors; at longer times we observed
aging (data not shown) [14,26]. The short time decay due
to initial cage exploration (t & �B [20], dashed line in
Fig. 2) is inaccessible to us. At small _�, Fs at short times
still exhibits a plateau, in agreement with the caging in
Fig. 1(e). As _� increases, this plateau shrinks and for the
highest _� it vanishes and likely merges with the short time
decay. At longer times, Fs decays strongly for all _� � 0,
marking shear-induced structural relaxation and cage re-
arrangements. The structural relaxation time ��, defined
by Fs�Qm; t � ��� � e�1, decreases on increasing _�.

Importantly, Fs is independent of the starting time t0 (see
data for _� � 0:93� 10�3 s�1); i.e., a stationary state is
achieved.

Our data confirm the theoretically predicted ‘‘time-shear
superposition principle’’ [5,6]: when time is scaled by ��,
the � relaxation follows a master curve fs�Qm; t=���,
Fig. 2 inset. As in LJ simulations [9], our fs is a pure
exponential. This differentiates a shear-melted glass from a
concentrated HS colloidal fluid at �<�g and _� � 0,
where we find a stretched exponential behavior for Fs�Q *

Qm=2�, as can also be deduced from [20].
We find that �� / _��� with � � 0:80� 0:01 [27], in-

dependent of the criterion or Q used to determine �a. This
behavior means that the accumulated strain at �� is not
constant, but varies as _��� / _�0:2. These data are consis-
tent with a schematic model [5] for driven glasses and also
match the ‘‘creep’’ of a driven particle in a correlated
random potential [28]. An ‘‘entropic barrier hopping’’
model [29], without any ‘‘ideal’’ glass divergences, shows
a similar dependence of the hopping time on _�.

Turning to the mean-squared displacement (MSD)
hdy2�t�i, Fig. 3(a) inset, we see that it exhibits a crossover
from caged to diffusive motion for

�����������
hdy2i

p
=a ’ 0:15

(hdy2i ’ 0:017 �m2), consistent with the ‘‘Lindemann pa-
rameter’’ for cage rattling at the quiescent glass transition
[19]. The long time self-diffusion constant Dy, Fig. 3(b),
follows the relaxation rate Dy / �

�1
� / _�0:8, and not the

shear rate _�. To emphasize this and to address anisotropy in
the dynamics, we plot in Fig. 3(c) the product 2Dj�� for
j � x, y, z along with the value hdy2����i � 2=Q2

m ex-
pected from a Gaussian approximation Fs�Qm; t� ’
e�Q

2
mhdy2�t�i=2 [20]. We find that Q2

mDy�� � 1:1 and this
also holds for j � x, z [30]. We again stress the difference

x
z

 

~x

~

z
 

1 µm

15 µm

15 µ m (e)

(d)(c)

(b)(a)
  z

 y ~x

 y

~x
y

 

FIG. 1 (color online). Colloid trajectories for _��9:3�
10�4 s�1. (a) 1:5 �m thick slice in the x, z plane for 160 s.
The start of each trajectory is shown by�, the end by �. The big
arrow marks the shear direction. (b) As in (a) but in the
desheared, ~x, z, reference frame, with ~xi � xi � _�

R
t
0 zi�t

0� dt0.
(c) y, z plane over 160 s. (d) ~x, y plane over 160 s. (e) Single
trajectory in the ~x, y plane over 800 s. Dotted circles mark
rattling in several cages (not the particle size), gray dots show the
locations at t � 0, 200, 400, 600, 800 s.
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FIG. 2 (color online). Selected incoherent scattering functions
Fs�Qm; t�, with _� increasing from right to left. Lines for _� �
0:93� 10�3 s�1 show two curves used in the average with start
times t0 spaced by 180 s. The dashed line schematizes initial
relaxation. Inset: data collapse using fs�Qm; t=���. Line: fs /
exp��t=���.
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with quiescent fluids at �<�g, which always show
D�� < Q�2 for Q * Qm. Figure 3(c) also shows that the
diffusion constants exhibit only a mild anisotropy: while
Dz >Dx;y, the difference is &20%. Similar or even smaller
anisotropy has been observed in simulations of sheared
glasses [8,10] and colloidal fluids [31], and in experiments
on dilute suspensions [32]. However, sheared non-
Brownian suspensions (Pe!1) show strong anisotropy
(D1x =D1y;z � 8) [33], with D1 / _�.

As a last microscopic characterization we study the
probability distribution of displacements P�dy�t�
 and the
non-Gaussian parameter �2;y � hdy

4�t�i=3hdy2�t�i2 � 1.
The latter measures broad tails in P�dy�t�
, reflecting

cage rearrangements as in Fig. 1(e). Figure 4(a) shows
�2;y�t� for various _�. It peaks at t 
 �2 corresponding to
the crossover from caged to diffusive behavior in the MSD
[inset, Fig. 3(a)], and vanishes for t * ��. A nonzero �2

also suggests cooperative motion, consistent with the het-
erogeneities for t & �� in Figs. 1(b)–1(d). The peak time
follows �2 / _�0:65, Fig. 3(a), somewhat different from the
�� scaling. Interestingly, the distributions Pfdy�t �
�2� _��
g nearly collapse for different _� [Fig. 4(b)], despite
a slight decrease of �2��2� with _�. In quiescent systems at
�<�g, such (near) collapse of Pfdy��2���
g at different
� is not expected since there �2��2� grows strongly with�
while the MSD at �2 decreases rapidly [25].

We now return to the _� dependence of ��. There is
currently no firm theoretical basis for relating �� to flow
properties. Nevertheless, �� is often taken (with some
simulational evidence [34]) as proportional to viscosity
[6], giving an effective stress �� � G0�� _� withG0 a modu-
lus. The resulting ‘‘microscopic’’ flow curve shows �� /
_�0:2, Fig. 5. Recent theories [4,6] have argued for the

existence of a dynamic yield stress at _�! 0	 in uniform
shear. However, our results show no sign of a plateau in ��
for reduced rates down to Pe ’ 0:005.

Figure 5 shows the experimental global flow curve
measured with a stress controlled rheometer (AR2000,
TA Instruments) in cone-plate geometry (diameter
40 mm, angle 1�, both surfaces coated with particles).
The stress � is related to the average shear rate _�a by
�� _�a� � ��D�Y 	 A _�na with a dynamic yield stress ��D�Y �
1:36 Pa and n � 0:56, similar to previous HS measure-
ments [35].

To compare with the local behavior �� � G0�� _�, in
Fig. 5 we have chosen G0 to match �� and �� _�a� at high
_�. Clearly, the local and global data disagree. Some dis-

crepancy may be due to the fact that, for Pe * 1, hydro-
dynamic effects render the relation �� / �� _� less valid.
More importantly, discrepancy could arise from the pres-
ence of shear localization, e.g., due to the existence of a
static yield stress [5,16]. We have already mentioned that
in our parallel-plate shear cell, a global shear rate _�a
typically corresponds to a jammed region ( _� ’ 0) coexist-
ing with a flowing region with _� > _�a. Preliminary flow
imaging inside our rheometer shows that shear localization
also occurs in the cone-plate geometry, and sets in for _�a �
10�2 s�1 [36]. In LJ simulations [16], differences between
_� and _�a could indeed explain small deviations between
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local and global rheology. But this cannot explain the
rather larger deviations in Fig. 5. Possibly, the relation �� �
G0�� _� is an oversimplification [37] and instead we may
need to invoke analogies with ‘‘force chain’’ dominated
systems to make progress. Indeed, our global shear profile
_��z�, which exhibits a smooth rather than a steplike decay

of _��z� to zero (data not shown), has similarities with
velocity profiles in granular matter [38].

Concluding, we have studied the three-dimensional par-
ticle dynamics in a HS colloidal glass under steady shear
by fast confocal microscopy. Shear occurs in ‘‘fluidized’’
bands where colloids show nearly isotropic ‘‘cage break-
ing’’ and exponential relaxation, in contrast to the
stretched-exponential dynamics in dense colloidal fluids.
The relaxation rate scales as a power of the local shear rate:
��1
� / _�0:8. The ‘‘naı̈ve’’ microscopic flow curve deduced

from this result differs from the global, Herschel-Bulkley,
rheology. These and other recent results [39] show the
potential of fast 3D imaging to address fundamental ques-
tions in nonequilibrium physics.
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